Classification of Brain Tumors on MRI Images Using DenseNet and Support Vector Machine

Minarno, Agus Eko and kantomo, ilham setiyo and Sumadi, Fauzi Dwi Setiawan and nugroho, hanung adi and ibrahim, zaidah (2022) Classification of Brain Tumors on MRI Images Using DenseNet and Support Vector Machine. JOIV International Journal on Information Visualization, 6 (2). ISSN 2549-9904

[thumbnail of Minarno Kantomo Sumadi Nugroho Ibrahim - Brain tumor MRI SVM CNN classification smote.pdf]
Preview
Text
Minarno Kantomo Sumadi Nugroho Ibrahim - Brain tumor MRI SVM CNN classification smote.pdf

Download (3MB) | Preview
[thumbnail of Similarity - Minarno Kantomo Sumadi Nugroho Ibrahim - Brain Tumor MRI SVM CNN classification smote.pdf]
Preview
Text
Similarity - Minarno Kantomo Sumadi Nugroho Ibrahim - Brain Tumor MRI SVM CNN classification smote.pdf

Download (2MB) | Preview

Abstract

The brain is a vital organ in the human body, performing various functions. The brain has always played a major role in the processing of sensory information, the production of muscular activity, and the performance of high-level cognitive functions. Among the most prevalent diseases of the brain is the development of aberrant tissue in brain cells, which results in the formation of brain tumors. According to data from the International Agency for Research on Cancer (IARC), more than 124,000 people worldwide were diagnosed with brain tumors in 2014, and more than 97,000 people died due to the condition. Current research indicates that magnetic resonance imaging (MRI) is the most effective means of detecting brain cancers. Because brain tumors are associated with significant mortality risk, a large number of brain tumor MRI imaging datasets were used in this research to detect brain cancers using deep learning techniques. To classify three forms of brain tumors, including glioma, meningioma, and pituitary, a deep learning model called DenseNet 201 paired with Support Vector Machines (SVM) was employed in this work included three types of brain tumors. Based on the results of the tests that were conducted, the best accuracy results obtained in this study were 99.65 percent, with a comparison ratio of 80 percent for training data and 20 percent for testing data, oversampled with the SMOTE method, with the best accuracy results obtained in this study being 99.65 percent.

Item Type: Article
Keywords: Brain; Tumor; MRI; SVM; CNN; Classification; Smote
Subjects: T Technology > T Technology (General)
Depositing User: evalina Risqi Evalina ST.
Date Deposited: 02 Apr 2024 07:32
Last Modified: 02 Apr 2024 07:32
URI: https://eprints.umm.ac.id/id/eprint/5405

Actions (login required)

View Item
View Item