Klasifikasi pendonor darah potensial menggunakan pendekatan algoritmepembelajaran mesin

Lestandy, Merinda and Syafa'ah, Lailis and Faruq, Amrul Klasifikasi pendonor darah potensial menggunakan pendekatan algoritmepembelajaran mesin. Jurnal Teknologi dan Sistem Komputer,. ISSN 26204002

[thumbnail of Lestandy Syafa’ah Faruq - pendonor darah potensial kNN naïveBayes neural network pembelajaran mesin.pdf]
Preview
Text
Lestandy Syafa’ah Faruq - pendonor darah potensial kNN naïveBayes neural network pembelajaran mesin.pdf

Download (167kB) | Preview
[thumbnail of Similarity - Lestandy Syafa’ah Faruq - pendonor darah potensial kNN naïveBayes neural network pembelajaran mesin.pdf]
Preview
Text
Similarity - Lestandy Syafa’ah Faruq - pendonor darah potensial kNN naïveBayes neural network pembelajaran mesin.pdf

Download (1MB) | Preview

Abstract

Abstract – Blood donation is the process of takingblood from someone used for blood transfusions.Blood type, sex, age, blood pressure, and hemoglobinare blood donor criteria that must be met andprocessed manually to classify blood donor eligibility.The manual process resulted in an irregular bloodsupply because blood donor candidates did not meetthe criteria. This study implements machine learningalgorithms includes kNN, naïve Bayes, and neuralnetwork methods to determine the eligibility of blooddonors. This study used 600 training data divided intotwo classes, namely potential and non-potentialdonors. The test results show that the accuracy of theneural network is 84.3 %, higher than kNN and naïveBayes, respectively of 75 % and 84.17 %. It indicatesthat the neural network method outperformscomparing with kNN and naïve Bayes

Item Type: Article
Keywords: pendonor darah potensial; kNN; naïveBayes; neural network; pembelajaran mesin
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions: Faculty of Engineering > Department of Electrical Engineering (20201)
Depositing User: evalina Risqi Evalina ST.
Date Deposited: 08 Mar 2024 01:42
Last Modified: 08 Mar 2024 01:42
URI: https://eprints.umm.ac.id/id/eprint/4563

Actions (login required)

View Item
View Item