BAB II

SPESIFIKASI

2.1 PENGANTAR

2.1.1 Ringkasan Isi Dokumen

Dokumen ini berisi perencanaan desain pada rancang bangun kompensator *inrush current* pada motor induksi. Perencanaan ini berfungsi untuk mengurangi lonjakan awal pada motor induksi dari awal start. Dalam isi dokumen ini memaparkan tentang perancangan dan desain awal yang menjelaskan spesifikasi dan fungsi produk yang akan dibuat. Selanjutnya akan menjelaskan spesifikasi dari target fisik, spesifikasi keandalan dan perawatan, biaya dan jadwal dari pengembangan

2.1.2. Tujuan Penulisan dan Aplikasi / Kegunaan Dokumen

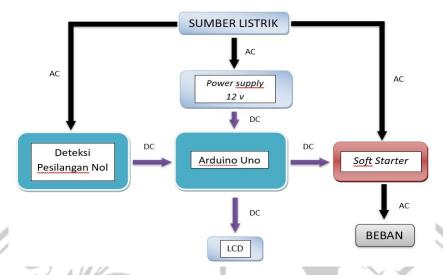
Tujuan dari penulisan dokumen:

- 1. Memaparkan Definisi Project rancang bangun kompensator *inrush current* pada motor induksi.
- 2. Menjelaskan Fungsi Dari rancang bangun kompensator *inrush* current pada motor induksi.
- 3. Menjabarkan Spesifikasi rancang bangun kompensator *inrush* current pada motor induksi.

2.2 Spesifikasi

2.2.1 Defenisi, Fungsi Dan Spesifikasi

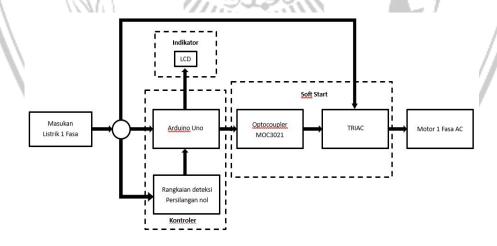
Rancang bangun *inrush current* pada motor induksi merupakan suatu rangkaian yang digunakan untuk mengurangi aliran arus lebih yang dialami pada motor induksi saat pertama kali motor diberi energy (dinyalakan). Aliran arus berlebih yang dialami dalam motor induksi selama beberapa saat pertama setelah motor diberi energi (dinyalakan)


mengakibatkan lonjakan aliran arus menjadi sebesar 5 kali sampai 7 kali lebih besar dari aliran arus nominal yang di terima oleh motor induksi. Alat ini membutuhkan metode *soft start* untuk mengurangi *inrush current* yang mengakibatkan lonjakan ekstrim pada motor induksi.

Motor induksi 1 fasa merupakan motor listrik arus bolak balik yang bekerja berdasarkan induksi elektomagnetik. Motor induksi memiliki sumber energy listrik dari kumparan stator, sedangkan kumparan rotor sistem kelistrikannya di induksikan melalui celah udara dari kumparan stator dengan media elektomagnet, alat ini digunakan sebagai penggerak mesin cuci, pompa air, kipas angin, dan lain lain.

Motor induksi 1 fasa ini memiliki spesifikasi fisik berbentuk *horizontal* dengan berat 14,5 Kg, ukuran Ass 16 mm, dan merk yang di gunakan *OSSEL*, alat ini juga memiliki power ½ Hp, daya 370 Watt, tegangan 220 Volt dengan kecepatan 1400 RPM. untuk spesifikasi lingkunganalat ini tidak dapat di daur ulang. produk alat ini akan melakukan kinerja yang baik.

2.3 Desain


Pada sub bab ini menjelaskan gambaran umum desain alat seperti gambaran interaksi alat dengan manusia (user interface), desain atau gambaran instalasi produk dan perawatan produk.

Gambar 2 Desain Sistem

2.3.1 Spesifikasi Fungsi dan Performansi

Pada bab ini akan menggambarkan diagram blok yang menggambarkan komponen-komponen alat dan cara kerja fungsi alat beserta spesifikasi komponen setiap alat. Berikut penjabaran produk dengan diagram blok beserta spesifikasi masing-masing komponen:

Gambar 2.1 Block Diagram

Biaya Dan Jadwal 2.4

Pada sub bab berikut menjabarkan terkait biaya komponen, perhitungan biaya produksi. Selain biaya juga dijabarkan jadwal pengerjaan dan tugas masing-masing anggota kelompok.

Biaya Komponen 2.4.1

.4.1 Biaya Komponen	Biaya Komponen						
Alat/Bahan	Harga	Jumlah	Total				
Stop Kontak	Rp.21.000.00	1 Buah	Rp.21.000,00				
Skun	Rp.14.000,00	1 Buah	Rp.14.000,00				
ArduinoUNO R3 ATMEGA328P DIP ATMEGA 16U2	Rp. 60.000,00	1 Buah	Rp. 160.000,00				
Switch	Rp. 3000,00	1 Buah	Rp. 3.000,00				
Optocoupler Moc 3021	Rp. 5000,00	1 Buah	Rp. 5000,00				
Optocoupler 4n25	Rp. 3000,00	1 Buah	Rp. 3.000,00				
Modul mini hi-link pm03	Rp. 30.000,00	1 Buah	Rp. 30.000,00				
Resistor	Rp300	10 Buah	Rp. 3000,00				
Kapasitor	Rp. 750	4 Buah	Rp. 3000,00				

Total Ke	Rp. 1.202.900		
Terminal Blok	Rp. 2000,00	3 Buah	Rp. 6000,00
PCB Polos 1 layer	Rp.10.000,00	1 Buah	Rp. 10.000,00
Lampu LED	Rp. 20.000,00	4 Buah	Rp.20.000,00
DIAC DB3	Rp.900	1 Buah	Rp.900
TRIAC	Rp.15.000,00	1 Buah	Rp.15.000,00
Skring 10 A	Rp. 2000,00	1 Buah	Rp.2000,00
Diode bridge 10 a	Rp. 3000,00	1 Buah	Rp. 3000,00
Varistor S10K230	Rp. 6000,00	1 Buah	Rp. 6000,00
Power supply	Rp. 60.000,00	1 Buah	Rp. 60.000,00

2.4.2 Perhitungan Biaya Produksi

Hasil dari perkiraan biaya kegiatan riset dan pengembangan produk, seperti yang ditunjukkan pada tabel rincian harga produksi, adalah sebesar Rp. 172.202.900,00. Menurut perkiraan, pembuatan satu unit produk ini akan menghabiskan biaya sebesar Rp. 364.900 Dan dengan harga penjualan per unitnya sebesar Rp. 465.000, maka dengan penjualan 100 unit, akan didapatkan keuntungan sebesar Rp 10.010.000.

2.4.3 Jadwal Pengerjaan

Nama	Bulan Pelaksanaan					Penanggung			
Kegiatan	Nov	Des	Jan	Feb	Mar	Apr	Mei	Juni	Jawab
Penentuan									Fiqi Fauzan
Konsep					NΤ	Tr			Asaddin
Penentuan			1		LVI		H		Ahmad Jajuli
Komponen			7				-	4	Purnama
Perancanga				_				X	Fiqi Fauzan
n Alat awal	2/1				JL.		7		Asaddin
Pemesanan	(1)2	7			dH	1	//		Ahmad Zaki
alat dan	VZ	/			111	3//	Ø		
bahan					(///////				Sanjaya
Perakitan	1		20					1	Fiqi Fauzan
Alat	0 -								Asaddin
Pengujian	M	- /	33						Aditya Rizky
Produk			11						Saputra