

MONITORING DAN PENGENDALIAN DARI JARAK JAUH MOTOR LISTRIK INDUSTRI

Steven Irawan Sugiharto¹, Adila Febriani Valentina², Alief Lukhman Hakim³, Diding Suhardi⁴, Nur Kasan⁵.

Program Studi Teknik Elektro, Fakultas Teknik, Universitas Muhammadiyah Malang. 1072⁴ Venirawan72@gmail.com¹. adilavalen14@gmail.com². Sawunggalingswg@gmail.com³.

Latar Belakang

Teknologi pada era sekarang memiliki perkembangan laju yang semakin cepat dimana banyak digunakan dan diterapkan pada peralatan industri. Perkembangan teknologi banyak digunakan untuk melakukan suatu kontrol proses dengan beberapa peralatan yang bekerja secara berkesinambungan sehingga menjadi sisitem yang sangat kompleks. Pekerjaan peralatan pada suatu proses diperlukan proteksi dan monitoring terhadap suatu peralatan misalnya monitoring suplai tegangan yang masuk hingga proteksi terhadap motor induksi.

Tujuan

Alat ini bertujuan untuk monitoring dan pengendalian motor listrik berdasarkan parameter arus, tegangan, frekuensi, daya, dan suhu berbasis loT yang dapat ditampilkan pada laptop dan handphone. Alat yang dirancang ini diharapkan dapat memudahkan engineer untuk mengetahui kondisi motor jika terjadi gangguan secara real time sehingga motor tidak sampai mengalami kerusakan yang fatal jika terjadi gangguan dan produksi di industri dapat terus berjalan

Perancangan Blok Diagram Sistem

KESIMPULAN

Salah satu keuntungan system dapat di monitoring dan di kendalikan dari jarak jauh serta dapat mempercepat penanganan problem pada motor yang memberitahukan suhu pada motor terjadi overheat dan membaca beberapa tegangan ,arus,dan frekuensi.

Gambar 3. Display Data Historical Sistem Menyala.

Phase_A Cu	rrent_A	Active_A	Apparent_A	Frequency	Freq_Hz_VF D	C_Bus_VFI	Out_Voltage	Temp_IGBT	Current_VF	Status_VFD	TK4S_PV_Value	
198.3	4.65	719.2	922	49.93	50	248.8	170.7	40	3.8	FWD	36	
198.5	4.64	719.1	921	49.93	50	294.5	171.3	40	3.8	FWD	37	
219.7	0	0	0	49.92	50	300.1	211.6	39	0	FWD	37	
220	0	0	0	49.94	50	293.8	207.3	38	0	FWD	37	
216.8	0	0	0	49.94	50	299.9	210.4	38	0	FWD	37	
220	0	0	0	49.93	50	298.8	211.5	38	0	FWD	37	
220.2	0	0	0	49.93	50	301.3	212.6	37	0.1	FWD	37	
220.2	0	0	0	49.93	50	300.8	212.6	37	0	FWD	37	
220.4	0	0	0	49.93	50	300.1	212.1	37	0	FWD	38	
219.9	0	0	0	49.93	50	299.7	211.6	37	0	FWD	38	
218.7	0	0	0	49.93	50	293.8	207.4	37	0	FWD	38	
216.3	0	0	0	49.92	50	300.2	212.2	37	0	FWD	39	
220	0	0	0	49.92	50	300.1	211.6	37	0	FWD	39	
220.1	0	0	0	49.92	50	300.8	211.6	36	0	FWD	39	
219.9	0	0	0	49.91	50	294	208.2	36	0	FWD	39	
216.5	0	0	0	49.9	50	292.9	206.9	36	0	FWD	39	
217.6	0	0	0	49.9	50	300.9	212.1	36	0	FWD	40	
219.6	0	0	0	49.91	50	299.8	211.9	36	0	FWD	40	
219.2	0	0	0	49.89	50	299.2	211.5	36	0	FWD	40	
219.3	0	0	0	49.9	50	294.4	208.9	36	0	FWD	40	
217	0	0	0	49.91	50	294.3	208.1	36	0	FWD	41	
216.8	0	0	0	49.91	50	299.2	210.7	36	0	FWD	41	
219.6	0	0	0	49.91	50	301	212.4	36	0	FWD	41	
220.1	0	0	0	49.92	50	301.5	212.4	36	0	FWD	41	
220.3	0	0	0	49,91	50	301.5	212.7	36	0	FWD	41	Ì

Gambar 4. Database Hasil Pengujan Yang Ditampilkan Pada Excel.

MONITORING DAN PENGENDALIAN DARI JARAK JAUH MOTOR LISTRIK INDUSTRI

Steven Irawan Sugiharto¹, Adila Febriani Valentina², Alief Lukhman Hakim³, Diding Suhardi⁴, Nur Kasan⁵.

Program Studi Teknik Elektro, Fakultas Teknik, Universitas Muhammadiyah Malang. stevenirawan72@gmail.com¹. adilavalen14@gmail.com². Sawunggalingswg@gmail.com³.

MANUAL GUIDE

- 1. Menghidupan supplai MCB.
- 2. Menunggu HMI, VFD dan Power Meter Terkoneksi.
- 3. Hubungkan HMI dengan koneksi internet.
- 4. Menekan Tombol Push Button Standby.

5. Buka Aplikasi Haiwell Scada pada Handphone atau Laptop.

6. Mengatur Frekuensi Pada VFD sesuai kebutuhan,

kemudian kita start forward atau reverse sesuai

kebutuhan.

7. Selesai.

ACC 110/24