BABI

LATAR BELAKANG PROYEK

1.1. Pengantar

1.1.1. Ringkasan Isi Dokumen

Dokumen ini menjelaskan pelaksanaan konsep capstone design project sebagai bagian awal dari tugas akhir. Dokumen ini akan menjadi acuan dalam melaksanakan dan memberikan solusi terhadap permasalahan yang sering terjadi pada dunia pendidikan atau perusahaan yang memerlukan rekaman kehadiran mahasiswa atau karyawan. Project ini menjelaskan berupa perancangan sistem yang akan diusulkan mulai dari penjabaran sistem, desain sistem, dan desain software. Dimana saat melakukan pengumpulan data tersebut masih banyak menggunakan metode manual dan masih kurang efektif untuk dilakukan. oleh karena itu pada dokumen ini membahas tentang pembuatan Modul Pembelajaran Energi Terbarukan : PLTS berbasis Internet Of Things (IoT) yang nantinya bisa dikembangkan dan diimplementasikan secara komersial.

1.1.2. Tujuan Penulisan dan Aplikasi/Kegunaan Dokumen

Dokumen ini akan menjadi panduan selama proses pembangunan dan sebagai bahan evaluasi pada tahap pembuatan sistem maupun di akhirnya. Penulisan dokumen ini bertujuan untuk mempermudah pelaksanaan serta memberikan pemahaman kepada pembaca mengenai perancangan sistem prediksi banjir yang akan dikembangkan. Serta untuk memaparkan definisi Modul Pembelajaran Energi Terbarukan : PLTS berbasis *Internet Of Things (IoT)*. Menjelaskan Fungsi Dari Modul Pembelajaran Energi Terbarukan : PLTS berbasis *Internet Of Things (IoT)*. Menjabarkan Spesifikasi Alat Yang Digunakan Pada Modul Pembelajaran Energi Terbarukan : PLTS berbasis *Internet Of Things (IoT)*.

1.1.3. Daftar Singkatan

Bagian ini berisi daftar singkatan yang digunakan dalam penulisan C100 – C500. Penulisan daftar singkatan dapat menggunakan format tabel berikut:

Tabel 1. 1 Daftar Singkatan

Singkatan	Arti	
AC	Alternating Current	
DC	Direct Current	
ІоТ	Internet of things	
PLN	Perusahaan Listrik Negara	
PLTS	Pembangkit Listrik tenaga surya	
KwH	Kilowatt-hours	
SCC	Solar Charge Controller	
MCB	Miniature Circuit Breaker	
MPPT	Maximum Power Point Tracking	
A	Ampare	
V	Volt	
w E	Watt	
Wp	Watt Peak	
PV	Photovoltaik	
PC	Personal Computer	
HP	Handphone	

1.2. Development Project Proposal

1.2.1. Need, Objective, and Product

Listrik pada era sekarang merupakan subtansi terpenting juga dalam hidup manusia. Setiap manusia memerlukan listrik untuk kehidupan sehari hari seperti untuk menghidupkan mobil, lampu, kulkas, mesin air, dst. Dalam hal ini penggunaan listrik semakin banyak dari tahun ketahun dan penggunaan energi ini umumnya masih menggunakan energi tak terbarukan salah satunya seperti fosil yang jadi penyebab udara kotor dan emisi gas rumah kaca yang berdampak buruk pada perubahan iklim.

Untuk mengatasi hal tersebut sebaiknya menggunakan energi terbarukan seperti PLTS yang dapat mengurangi penggunaan terhadap energi tak terbarukan dalam hidup manusia. Penggunaan PLTS merupakan langkah awal dari pengurangi polusi udara dan emisi gas rumah kaca Pembangkit listrik tenaga surya atau merupakan suatu energi terbarukan yang berguna untuk mengubah panas matahari menjadi sumber listrik dengan menggunakan fotovoltaik.[1]

Pada dasarnya, sistem PLTS yang akan dibuat adalah PLTS off grid yang dirancang untuk beroperasi secara mandiri tanpa ada hubungan konfigurasi sistem dengan jaringan listrik PLN.[2]

1.2.2. Product Characteristics

Deskripsi umum mengenai konsep sistem/produk:

- 1. Fungsi Utama:
 - Untuk Mengajarkan kepada para siswa bahwa energi terbarukan seperti PLTS di Indonesia itu sendiri berpotensi besar.
 - Untuk mengurangi beberapa kerusakan alam seperti polusi udara yang disebabkan sebagian oleh energi tak terbarukan.
- 2. Feature Dasar:
 - Inverter.
 - Panel Surya.
 - MCB AC.
 - MCB DC
 - Baterai.
 - Watt Meter.
 - Kotak Kontak.
 - Terminal Box.
 - Solar Charge Controller (SCC).
 - ESP-32
 - PZEM-004T
- 3. Feature Unggulan:
 - Desain yang akan digunakan bersifat fleksibel dengan tambahan roda untuk mudah berpindah.

- Keamanan pada saat sistem sedang beroperasi untuk menjaga agar listrik yang dihasilkan tidak bocor dan tidak ada kejutan yang dapat membahayakan pengguna pada saat pengoperasian.
- 4. Karakteristik sistem/produk yang diperlukan:
 - Pada memonitoring secara real-time karena trainer PLTS berbasis IoT ini menggunakan PZEM-004T yang di hubungkan dengan ESP-32 serta Aplikasi Blynk.
 - Serta miniature ini dapat dipindahkan secara mudah dikarenakan pada bawah miniature dikasih roda untuk memudahkan bergerak.

1.3. Business Analysis

Pesatnya perubahan energi tak terbarukan ke energi terbarukan untuk menghindari polusi dan menjaga kelestarian alam mendorong perkembangan teknologi untuk menciptakan energi terbarukan dan tidak menghasilkan polusi, aman, serta praktis. Di era modern seperti ini, penggunaan energi listrik energi tak terbarukan masih banyak sehingga menyebabkan polusi lebih bertambah. Padahal untuk dapat beraktivitas dan menjalankan fungsi hidup lainnya kebutuhan akan listrik yang dapat ditemukan dengan mudah dan aman dari polusi sangat penting. PLTS berdiri sendiri atau biasa disebut dengan PLTS off grid menyesuaikan desain dengan skala sekolah menengah membuat setiap sekolah dapat memiliki dan menggunakan alat ini untuk mendapatkan energi listrik yang terbarukan.

Selain untuk mendapatkan energi listrik yang terbarukan, PLTS juga ramah akan lingkungan sekitar dan mencegah perubahan iklim yang terjadi akibat emisi gas karbon dari penggunaan energi tak terbarukan. Penggunaan PLTS untuk memperoleh energi listrik tanpa polusi akan menjaga lingkungan sekitar tetap aman dan sehat.

1.4. Product Development Planning

1.4.1. Development Effort

1.4.1.1. Man-Month

Modul pembelajaran energi terbarukan berbasis PLTS dan internet of things ini memakan waktu selama 8 bulan dimulai dari November 2023 dan selesai Juli. Pengerjaan ini dilakukan oleh 4 orang/1 kelompok mahasiswa Tingkat akhir program sutdi Teknik elektro.

1.4.1.2. Machine-time

Terdapat jenis perangkat keras / perangkat lunak yang digunakan dalam pengerjaan produk ini :

 Laptop yang digunakan oleh mahasiswa untuk menentukan desain, wiring, dan membuat laporan serta memprogram.

1.4.1.3. Development tools

Beberapa perangkat keras yang digunakan dalam proses pengembangan produk :

- Inverter berfungsi untuk mengubah arus searah menjadi arus bolakbalik.
- SCC (Solar Charge Controller) sebagai pengisi daya baterai dari cahaya matahari melalui panel surya.
- Baterai sebagai penyimpan daya muat cahaya matahari melalui panel surya.
- Watt Meter untuk menampilkan tegangan, daya, arus, PF, KwH, dan frekuensi.
- MCB sebagai pemandu battery untuk masuk dan keluar serta keluar menuju output.
- Panel surya sebagai penyerap atau penyimpan sumber cahaya matahari.
 Terdapat perangkat lunak yang digunakan dalam proses pengembangan produk:
- ESP32 untuk menghubungkan antara PZEM-004T ke Aplikasi Blynk.
- PZEM-004T untuk mendata arus, tegangan, daya, kwh, serta frekuensi.
- Aplikasi Blynk untuk menampilkan hasil dari PZEM-004T.
- Kode program yang digunakan untuk memrogram beberapa sensor yang digunakan untuk proses kontrol dari alat.

1.4.1.4. Test equipment

Peralatan yang diperlukan untuk pengujian produk antara lain:

 Alat pengujian kelayakan menggunakan Tang Ampere dan Aplikasi Blynk untuk memastikan apakah bisa terhubung dengan PZEM-004 untuk pemantauan arus, tegangan, daya, frekuensi, dan KwH lewat ESP-32. • Laptop untuk melihat hasil uji dari data input yang telah diolah.

1.4.1.5. Kebutuhan akan expert

Dibutuhkan banyak ahli untuk mendukung pengembangan produk :

• Dosen pembimbing untuk mengarahkan dan memberikan saran terkait proyek yang akan dibuat.

1.4.1.6. Probabilitas keberhasilan pengembangan

Peluang keberhasilan dalam pengembangan produk ini sangat tinggi. Hal ini disebabkan oleh :

- Komponen yang mudah dicari.
- Dan banyak referensi yang bisa dijadikan acuan.

Walaupun terdapat banyak faktor pendukung keberhasilan, hal ini terdapat beberapa faktor yang menghambat pengembangan produk ini.

• Seperti salah dalam merangkai, wiring, dan salah dalam memprogram.

1.4.1.7. Jadwal dan Waktu yang diperlukan untuk pengembangan

Tabel jadwal dan waktu pengembangan produk dapat dilihat di bawah ini.

Tabel 1. 2 Jadwal dan Waktu Pengembangan Produk

Proses/Task	Fase	Deliverables	Jadwal	Kebutuhan Resource
Pembuatan konsep dan	Studi Literatur			Literatur, dosen pembimbing
rincian prototipe	Penetapan fitur dan target konsumen	C100	November 2023	Literatur, dosen pembimbing
Pembuatan rincian secara teknis	Penetapan rincian	C200	November 2023	Literatur, dosen pembimbing
Rancangan design sistem produk	Penetapan desain produk awal	C300	Desember 2023	Literatur, dosen pembimbing

Proses/Task	Fase	Deliverables	Jadwal	Kebutuhan Resource
	Penetapan desain produk tingkat lanjut	C300	Desember 2023	Literatur, dosen pembimbing
	Penetapan desain produk akhir	C300 MU	Januari 2023	Literatur, dosen pembimbing
	Pemesanan alat dan bahan	Alat dan bahan lengkap	Januari 2024	Suplier alat dan bahan, alat komunikasi
Implementasi	Perakitan alat	Sistem selesai dirakit	Maret 2024	Alat dan bahan
pembuatan hardware	Pembuatan hardware tahap awal	-j=C400	Maret 2024	Komponen penyusun produk
*	Pembuatan hardware final	C400	April 2024	Supplier, dosen pembimbing, komponen penyusun
Pengetesan produk	Validasi kesesuaian produk dengan	C500	April 2024	Dosen pembimbing

Proses/Task	Fase	Deliverables	Jadwal	Kebutuhan Resource
	spesifikasi			
	tahap awal			
	Validasi			
	kesesuaian			
Verifikasi	produk akhir	C500	Juni 2024	Dosen
Verilikasi	dengan	MU	Juni 2024	pembimbing
	spesifikasi	_	24	
1/6	tahap final	, 3		

1.5. Cost Estimate

Tabel 1. 3 Cost Estimate dan Pengeluaran

Donasluonon	Uraian Estimasi Harga		Hanna Tatal
Pengeluaran	Harga Satuan	Jumlah	Harga Total
Panel Surya	Rp 800.000,00	1 pcs	Rp 800.000,-
MCB DC	Rp 60.000,00	1 pcs	Rp 60.000,-
MCB AC	Rp 95.000,00	1 pcs	Rp 95.000,-
Terminal Box	Rp 10.0000,00	3 pcs	Rp 30.000,-
Watt Meter	Rp 107.000,00	1 pcs	Rp 107.000,-
Kotak Kontak	Rp 9.000,00	1 pcs	Rp 9.000,-
Fitting	Rp 6.000,00	2 pcs	Rp 12.000,-
Saklar	Rp 15.000,00	2 pcs	Rp 30.000,-
Inverter	Rp 450.000,00	1 pcs	Rp 450.000,-
ESP-32	Rp 59.000,00	1 pcs	Rp 59.000,-
SCC	Rp 250.000,00	1 pcs	Rp 250.000,-
Baterai	Rp 1.500.000,00	1 pcs	Rp 1.500.000,-
PZEM-004T	Rp 135.000,00	1 pcs	Rp 135.000,-
Pembuatan Rangka	Rp 500.000,00	1/buah	Rp 500.000,-
Total			Rp 4.025.000,-

1.6. Daftar *Deliverables*, **Spesifikasi, dan Jadwalnya**Tabel 1. 4 *Deliverable*, Spesifikasi, dan Jadwal Proyek Penelitian

Deliverables	Spesifikasi	Jadwal
Ide/ Konsep Sistem	Ide dan konsep awal untuk	November 2023
	proses pengembangan	4 //
100	produk telah ditentukan	1 /
Spesifikasi fungsional	Spesifikasi fungsional	Desember 2023
sistem	sistem	
Spesifikasi dari	Spesisfikasi dari rancangan	Januari 2023
rancangan perangkat	perangkat keras dan lunak	
keras dan lunak	sudah ditentukan	
Rancangan Hardware	Spesifikasi dari rancangan	Maret 2024
dan Software System	perangkat keras dan lunak	
	sudah ditentukan	

Deliverables	Spesifikasi	Jadwal
Penerapan modul	Penerapan sistem yang	April 2024
hardware dan software	dirancang	
Pengujian Sistem	Uji keseluruhan yang telah sistem yang telah dirancang	Mei2024
Verifikasi	Validasi hasil pengujian sesuai spesifikasi yang diinginkan dan proses dokumentasi akhir.	Juli 2024

1.7. Cluster Plan

Dalam pengerjaan proyek ini dilakukan kerjasama dengan beberapa pihak:

 Dosen pembimbing dalam melakukan bimbingan laporan, saran alat dan harga dari komponen.

1.8. Conclusion

Pembuatan Modul Pembelajaran Berbasis PLTS dan Iot akan mengajarkan kepada generasi muda betapa pentingnya energi terbarukan untuk keperluan seharihari dan juga untuk alam karena energi terbarukan tidak menyebabkan polusi udara. Selain itu dalam Modul ini kami menjelaskan beberapa fungsi-fungsi yang ada dalam PLTS seperti kegunaannya dan cara perawatannya.

MALA