
COUNTRY	SUBJECT AREA AND CAT	EGORY	PUBLISHER	
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	Agricultural and I (miscellaneous) Ecology, Evolutio Systematics Biochemistry, Geneti Biology Biotechnology Immunology and Mic Biotechnology	Ecology, Evolution, Behavior and Systematics chemistry, Genetics and Molecular ogy Biotechnology nunology and Microbiology Applied Microbiology and Biotechnology PUBLICATION TYPE		ndjah Mada, Faculty of Biology ISSN 25409573, 25409581
COVERAGE 2020-2022	INFORMATION Homepage			
	How to publ	ish in this journal Dugm.ac.id		
Quartiles				₩ ==
Agricultural and Biological Sciences (miss Applied Microbiology and Bio Bio Ecology, Evolution, Behavior and S	technology			
		2021		2022
• SJR	<u>*</u> =	Total Documents		<u>×</u> ==
0.18		50		
0.15		25	/	
0.12		0		
2021	2022	2019	2020 2	2021 2022

Journal of Tropical Biodiversity and Biotechnology Volume 08, Issue 02 (2023): jtbb81339 DOI: 10.22146/jtbb.81339

Short Communications

Nutritional Contents and Bioactive Compounds among Several Variants of *Dolichos lablab*: Fundamental Facts for Functional Food Development

Elly Purwanti¹*, Feri Eko Hermanto^{2,3}, Wahyu Prihanta¹, Tutut Indria Permana¹, I Gusti Ngurah Agung Wiwekananda⁴

1)Department of Educational Biology, Faculty of Teacher Training and Education, University of Muhammadiyah Malang, Malang 65144, East Java, Indonesia

2)Faculty of Animal Sciences, Universitas Brawijaya, Malang 65145, East Java, Indonesia

3)Bioinformatics Research Center, Indonesian Institute of Bioinformatics (INBIO Indonesia), Malang 65162, East Java, Indonesia

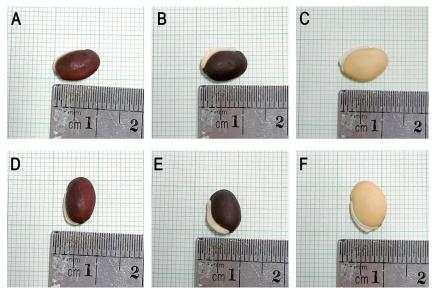
4) Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang 65145, East Java, Indonesia

* Corresponding author, email: purwantielly@ymail.com

Keywords:

Antioxidant Dolichos lablab functional food nutritional value secondary metabolites Submitted: 15 January 2023 Accepted: 29 March 2023 Published: 03 July 2023 Editor: Miftahul Ilmi

ABSTRACT


To date, the data describing various nutritional and secondary metabolites content of Lablab beans is incomplete. Therefore, this study evaluated the nutritional value, secondary metabolites, and antioxidant activity of three different variants of Lablab beans, i.e., brown, black, and cream beans. The results showed that the brown Lablab beans had outperformed other variants according to their nutritional value and flavonoid content with outstanding DPPH scavenging activity. However, the black beans also showed good bioactive contents through their total phenolic percentage with decent reducing activity via the FRAP assay. Those who are keen in developing functional food from Lablab beans should consider this data as a reference.

Copyright: © 2023, J. Tropical Biodiversity Biotechnology (CC BY-SA 4.0)

Legumes have provided nutritional value for years, contributing to the development of agriculture and food security (Considine et al. 2017). Not only are they a staple food in several regions of the globe, but legumes also provide valuable nutritional and health benefits (Polak et al. 2015; Piergiovanni 2021). The consumption of legumes has been reported to have protective roles against modern society's health problems, such as diabetes mellitus, hyperlipidemia, and cardiovascular diseases (Polak et al. 2015; Hermanto et al. 2022a; Hermanto et al. 2022b). Furthermore, the bioactive compounds in legumes also provide numerous biological activities to achieve physiological homeostasis (Cakir et al. 2019). Those facts are more than enough to describe the vital role of legumes in developing social health status. There are many species of legumes worldwide, but not all beans are known in the society. One of the underutilized legumes is Lablab beans (Dolichos lablab), also known as Koro Komak in Indonesia (Purwanti et al. 2019b). Natively grown in the African continent and Indian subcontinent, Lablab beans have become the primary source of energy due to their rich fibre and carbohydrate contents (Maass et al. 2010; Purwanti et al. 2019a). Moreover, Lablab beans also have superior

environmental adaptation due to their ability to grow in drought areas (Missanga et al. 2021). Their innate nature may benefit the maintenance of food security, particularly in lands with low water supply. Thus, the cultivation of Lablab beans provides a promising means in maintaining primary food stock in dry areas.

Three primary accessions or variants of Lablab beans have been identified in Indonesia (Purwanti et al. 2019b). Those accessions are commonly identified based on the beans' colour, i.e., brown, black, and cream (figure 1). Although other variants may exist, these three are commonly found in several regions in Indonesia, such as East Java (Probolinggo and Madura Island) and West Nusa Tenggara (Purwanti et al. 2019b). The previous study reported the bioactivity of bioactive compounds and nutritional values of Lablab beans (Purwanti et al. 2021; Purwanti et al. 2022). Nevertheless, no report addresses the nutritional differences among the variants of Lablab beans. Lablab beans have numerous bioactivities including antioxidant (Maheshu et al. 2013), antidiabetic (Purwanti et al. 2022), antivirus (Purwanti et al. 2021), antimicrobial (Bai-Ngew et al. 2021), and anti-inflammatory properties (An et al. 2020). These bioactivities make it a promising and excellent candidate for functional food development. The details on the nutritional comparison among Lablab beans will provide a fundamental guideline for determining suitable variants for functional food development, and it will be addressed by this study.

Figure 1. The most popular Lablab beans variant found in Indonesia are brown (A, D), black (B, E), and cream (C, F). The beans have been positioned to obtain the length (A-C) and the width (D-F).

The sample of the beans for this study was obtained from Sumenep, Madura Island, East Java, Indonesia during dry season in 2019. Details of the sample profiles and precise locations are as described in the previous study (Purwanti et al. 2019b). The beans were stored in 4°C until used. The beans were processed as per the extraction method previously mentioned in (Purwanti et al. 2022). Briefly, grounded beans were soaked in 96% ethanol with 3:1 ratio (volume in L and weight in kg) for 24 hours. The soaked beans powder then filtered to obtain the filtrate and homogenate. The filtrate then rotary evaporated to separate solvent and solute followed by freeze drying process to obtain Lablab beans' extract. The extract then processed to the subsequent analysis.

The crude fibre, total protein, and crude fat content were determined according to the previous protocol (Thiex 2009). Amylose and amylopectin content were also measured colorimetrically using a previously described method (McGrance et al. 1998). On the other hand, IKA C2000 Calorimeter System (IKA Works, Germany) was employed to calculate the total calories as per manufacturer's protocol.

To determine the secondary metabolites content, total phenol and total flavonoid was employed. Total flavonoid was performed as per a previous protocol with minor modifications (Pratami et al. 2018). Querce-tin was used as the standard flavonoid compound. The extract was dissolved in water, then 50 μ L of the dissolved extract was mixed with 10 μ L of 5% NaNO₂, followed by the addition of 150 μ L of water and 10 μ L of 1 M CH₃COONa, consecutively. The sample was then incubated at room temperature for 40 minutes. After incubation, the sample was quantified using a spectrophotometer at 415 nm wavelength. The total flavonoid concentration was described as percent (%) of Quercetin Equivalent (QE) according to the standard curve.

Total phenol was measured according to the previous study with minor modifications (Hyun et al. 2014), with gallic acid as the standard. The sample was diluted in water, and 100 μ L of the sample was added to 1 mL of Folin Ciocalteu reagent and incubated for 5 minutes at room temperature with minimum light ambiance. 1 mL of 7.5% Na₂CO₃ was added to the mixture, followed by incubation for 90 minutes in the same condition mentioned beforehand. Upon incubation, the sample was then quantified spectrophotometrically at 725 nm. The total phenol was defined as percentage of Gallic Acid Equivalent (GAE) as per the build standard curve.

The antioxidant activity was measured by DPPH scavenging and Ferric Reducing Antioxidant Potential (FRAP) assays. The method for DPPH scavenging and FRAP reducing power was performed as described in the earlier work (Irshad et al. 2012). All data were analysed by one-way ANOVA followed by Least Significant Difference (LSD) posthoc analysis. The data was determined as significantly different if the pvalue is < 0.05. The data was then visualised as mean <u>+</u> standard deviation.

All Lablab bean variants have good nutritional content according to the caloric, total fibre, protein, crude fat, amylose, and amylopectin content. The fibre content of black Lablab bean was the highest, with 8% fibre content, followed by the cream and brown variants (table 1). The considerable content of dietary fibre in Lablab beans displayed an immense potential to be developed as a functional food. As commonly known, fibre consumption can improve physiological homeostasis, particularly in relations to lipid and glucose metabolism (Jahan et al. 2020). High fibre content is also suitable for dietary intervention to prevent obesity (Davib et al. 2020). With regards to total protein content, cream beans had the same protein content as brown beans, while black beans had the lowest content of total proteins (table 1). The high percentage of total protein content in Lablab beans would be valuable as a candidate for functional foods since plant-based protein have broad health benefits, such as antioxidant, antiviral, antidiabetic, and anticancer properties (Maphosa et al. 2017; Liu et al. 2020; Sipahli et al. 2021; Roy et al. 2022; Purwanti et al. 2022). Nevertheless, specific treatment, such as isoelectric preparation, was suggested to obtain a protein isolate with adequate quality and good functional properties (Subagio 2006).

Cream beans have the highest percentage of crude fat among all variants (table 1). The low-fat content of Lablab beans exhibit a great potential as functional food compared to other beans since most legumes contain around 1,5% crude fat total (Etiosa et al. 2017). Low-lipid food

provides more health benefits with deleterious high-energy intake, particularly in areas with high level of famine cases (Delaš 2011; Robson 2013). For instance, West Nusa Tenggara province in Indonesia has the highest occurrence of hunger cases (Mone & Utami 2021). Interestingly, this region also founds a large distribution of Lablab beans (Jayanti et al. 2011). The utilization of Lablab beans to reduce the incidence of famine should be considered. Thus, the low-fat content of Lablab beans displayed their potential as a functional food candidate.

This study also measured the amount of amylose and amylopectin as part of its functional properties and energy source. The black Lablab bean has the highest amylose content, with 15% amylose content, followed by brown and cream (table 1). In contrast, black beans had the lowest amylopectin content compared to the other analysed variants (table 1). Similarly, black beans also had the lowest calorie per gram compared to other variants of Lablab beans (table 1). A food source with high amylopectin induces a better glycemic response, especially during fasting (Singhania & Senray 2012). This starch also provides higher energy intake than low amylopectin sources (Singhania & Senray 2012). Moreover, the increasing ratio of amylopectin/amylose reflects better nutrient digestibility (Gao et al. 2020). A diet containing large portion of amylopectin positively associated with the postprandial insulin response resulted in more efficient nutrient uptake and glucose metabolism (Gao et al. 2020). Therefore, brown and cream beans may become potential candidates as functional food.

This study demonstrated that Lablab beans have been found to have comparable levels of total protein with *Vigna radiata* and *Pisum sativum*, and even higher levels than *Glycine max* and *Lens culinaris* (Singh et al. 2022). In addition, Lablab beans have a favourable nutritional profile with higher dietary fibre and lower fat content compared to *Phaseolus vulgaris*, *L. culinaris*, *P. sativum*, and Edamame (Dhingra et al. 2012; Mullins & Arjmandi 2021; Didinger & Thompson 2021). The amylose content in Lablab beans was higher than *Cicer arietinum* and *G. max* (Tayade et al. 2019). Moreover, the amylose and amylopectin content in Lablab beans also similar with *V. angularis*, a "red pearls" that has good nutrients and hypoglycemic activity (Zhang et al. 2022).

The total phenolic and flavonoid contents evaluation demonstrated that brown beans exhibited the greatest content of flavonoid (p < 0.01), while the cream beans had the most negligible flavonoid content (table 2). On the other hand, the phenolic content was highest in black beans compared to other Lablab variants (p < 0.05, table 2). This result showed that Lablab beans have many phenolic compounds, with the flavonoid group being the most abundant in brown beans. In other words, the other variants may comprise of other phenolic compounds like phenolic acids, tannins, and other phenolic compounds (Purwanti et al. 2022). The current result was also higher than several edible beans, such as *P. vulgaris, P. lunatus, V. radiata* and *C. arietinum* (Zhao et al. 2014). Nonethe-

Table 1. The comparison of primary metabolites and nutritional content among Lablab bean variants.

Variant	Fiber (%)	Protein (%)	Crude Fat (%)	Amylose (%)	Amylopectin (%)	Calorie (kcal/g)
Brown	$7.02 \pm 0.015^{\mathrm{a}}$	$24.91\pm0.06^{\rm a}$	$0.36 \pm 0.01^{\mathrm{a}}$	14.41 ± 0.095^{a}	87.18 ± 0.030^{a}	3.86 ± 0.005^{a}
Black	$8.16\pm0.040^{\rm b}$	$23.43\pm0.23^{\rm b}$	$0.45\pm0.03^{\rm b}$	$15.46 \pm 0.515^{\mathrm{b}}$	$85.79 \pm 0.015^{\mathrm{b}}$	$3.83\pm0.002^{\rm b}$
Cream	8.11 ± 0.005^c	$24.82\pm0.15^{\rm a}$	$0.55\pm0.04^{\rm c}$	$13.52\pm0.120^{\rm c}$	$87.90 \pm 0.025^{\circ}$	$3.85\pm0.002^{\rm a}$

Note: The data was presented as mean <u>+</u> standard deviations (n = 3). Different alphabetical notation indicates significant difference with p < 0.05 based on LSD test.

less, the total flavonoid contents of Lablab beans were lower compared to *P. sativum, C. arietinum, V. radiata, P. vulgaris, P. lunatus, L. culinaris, Vicia faba,* and *G. max* (Sharma & Giri 2022). Although flavonoids are the most abundant phenolic compounds with various biological activities (Kumar & Pandey 2013), other phenolic compounds, either simple phenols or polyphenols other than flavonoids, have also been reported to have bioactivities to improve physiological homeostasis, mainly through their antioxidant activity (Shahidi & Ambigaipalan 2015; Singh et al. 2017).

The high flavonoid content was positively correlated with antioxidant activity through DPPH scavenging activity, where brown beans had the highest scavenging activity compared to the others (table 2). However, the ferric reducing activity was stronger in variant with higher phenolic contents (table 2). These results were supported by a structureactivity relationship between radical scavenging from different phenolic compounds and the radical scavenging mechanism in DPPH and FRAP assay. Flavonoids have an ortho-dihydroxyl structure that plays a role in radical scavenging during DPPH assay by forming an intramolecular hydrogen bond and more stable ortho-hydroxyl phenoxyl radical during the oxidation process of radical scavenging (Zheng et al. 2010). Alternatively, other phenolic compounds, such as phenolic acids, have ortho or para position of the hydroxyl group in its benzene ring (Spiegel et al. 2020). Those structural differences influence the radical scavenging mechanism of flavonoids and other phenolic compounds in different antioxidant assay. Hydrogen Atom Transfer (HAT), Single-Electron Transfer followed by Proton Transfer (SET-PT), and Sequential Proton-Loss Electron Transfer (SPLET) are taking place during the DPPH assay. Contrary, SPLET is the main mechanism during the electron transfer enthalpy in the FRAP reaction system (Chen et al. 2020). Ferulic Acid, Hydroxycinnamic Acid, Sinapinic Acid, Coumaric Acid, and Isovanillic Acid are identified phenolic acids in Lablab beans. Also, Rutin and Isoquercetin are flavonoids that also found in Lablab beans (Purwanti et al. 2022). Those compounds were identified in adequate abundance in Lablab beans and may perform as radical scavenger during this study. Nevertheless, future studies are required to compare the secondary metabolites among different variant of Lablab beans to comprehend the phytochemical content differences better. Despite the different mechanisms and types of bioactive compounds in performing the antioxidant activity, it has been displayed that brown and black beans exhibit solid antioxidant properties.

This study shows that all Lablab bean variants have good amount of nutritional value, total phenol and flavonoid contents, and antioxidant activity. Lablab beans have adequate nutritional values surpassed other types of edible beans. Despite having lower flavonoid contents compared to commonly consumed beans, the phenolic compounds in these beans still exhibit superior performance. Finally, the cream variant shows slightly lower nutritional contents and bioactive compound compared to

Table 2. The total flavonoid, phenolic, and antioxidant capacity according to the DPPH scavenging capacity and FRAP analysis.

Variant	Total Flavonoid (%)	Total Phenol (%)	DPPH Scavenging (%)	FRAP (μM FeSO₄/mg)
Brown	26.25 ± 0.34^{a}	40.56 ± 0.69^{a}	78.87 ± 1.59^{a}	1154.58 ± 4.17^{a}
Black	$12.99\pm0.31^{\rm b}$	$45.28\pm2.56^{\rm b}$	$40.01 \pm 0.16^{\rm b}$	$2398.05 \pm 4.81^{\mathrm{b}}$
Cream	$12.15 \pm 0.06^{\circ}$	40.32 ± 3.06^{a}	$24.53 \pm 0.16^{\circ}$	$1061.53 \pm 2.41^{\circ}$

Notes: The data was presented in mean \pm standard deviations (n = 3). Different alphabetical notation indicates significant difference with p < 0.05 based on LSD test.

the other analysed Lablab beans. Still, some varieties possess a promising characteristic as a functional food candidate owing to their nutritional value.

AUTHORS CONTRIBUTION

EP designed the research and acquired the project funding, FE collected and analysed the data, WP and TIP wrote the manuscript, and IGNAW performed critical review and revision.

ACKNOWLEDGMENTS

The authors thank the Directorate of Research and Community Service (DPPM), University of Muhammadiyah Malang under PKID research grant scheme in 2022 (Grant No. E.2.a/334/BAA-UMM/IV/2022) for funding this work.

CONFLICT OF INTEREST

There is no conflict of interest raised in this study.

REFERENCES

- An, J.M. et al., 2020. Dolichos lablab L. extracts as pharmanutrient for stress-related mucosal disease in rat stomach. *Journal of Clinical Bi*ochemistry and Nutrition, 67(1), pp.89–101. doi: 10.3164/jcbn.20-11.
- Bai-Ngew, S. et al., 2021. Antimicrobial activity of a crude peptide extract from lablab bean (Dolichos lablab) for semi-dried rice noodles shelf-life. *Quality Assurance and Safety of Crops & Foods*, 13(2), pp.25– 33. doi: 10.15586/qas.v13i2.882.
- Çakir, Ö. et al., 2019. Nutritional and health benefits of legumes and their distinctive genomic properties. *Food Science and Technology*, 39, pp.1 -12. doi: 10.1590/fst.42117.
- Chen, J. et al., 2020. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. *Scientific Reports*, 10(1), 2611. doi: 10.1038/s41598-020-59451z.
- Considine, M.J., Siddique, K.H.M. & Foyer, C.H., 2017. Nature's pulse power: legumes, food security and climate change. *Journal of Experimental Botany*, 68(8), pp.1815–1818. doi: 10.1093/jxb/erx099.
- Dayib, M., Larson, J. & Slavin, J., 2020. Dietary fibers reduce obesityrelated disorders: mechanisms of action. *Current Opinion in Clinical Nutrition & Metabolic Care*, 23(6), pp.445–450. doi: 10.1097/ MCO.000000000000696.
- Delaš, I., 2011. Benefits and hazards of fat-free diets. *Trends in Food Science & Technology*, 22(10), pp.576–582. doi: 10.1016/j.tifs.2011.08.008.
- Dhingra, D. et al., 2012. Dietary fibre in foods: a review. Journal of Food Science and Technology, 49(3), 255. doi: 10.1007/s13197-011-0365-5.
- Didinger, C. & Thompson, H.J., 2021. Defining Nutritional and Functional Niches of Legumes: A Call for Clarity to Distinguish a Future Role for Pulses in the Dietary Guidelines for Americans. Nutrients, 13(4), 1100. doi: 10.3390/nu13041100.

- Etiosa, O.R., Chika, N.B. & Benedicta, A., 2017. Mineral and Proximate Composition of Soya Bean. Asian Journal of Physical and Chemical Sciences, pp.1–6. doi: 10.9734/AJOPACS/2017/38530.
- Gao, X. et al., 2020. Effects of Dietary Starch Structure on Growth Performance, Serum Glucose–Insulin Response, and Intestinal Health in Weaned Piglets. *Animals*, 10(3), p.543. doi: 10.3390/ ani10030543.
- Hermanto, F.E. et al., 2022a. On The Hypolipidemic Activity of Elicited Soybeans: Evidences Based on Computational Analysis. *Indonesian Journal of Chemistry*, 22(6), pp.1626–1636. doi: 10.22146/ijc.75777.
- Hermanto, F.E. et al., 2022b. Understanding hypocholesterolemic activity of soy isoflavones: Completing the puzzle through computational simulations. *Journal of Biomolecular Structure and Dynamics*, in press, pp.1–7. doi: 10.1080/07391102.2022.2148752.
- Hyun, T.K., Kim, H.C. & Kim, J.S., 2014. Antioxidant and antidiabetic activity of Thymus quinquecostatus Celak. *Industrial Crops and Products*, 52, pp.611–616. doi: 10.1016/j.indcrop.2013.11.039.
- Irshad, M. et al., 2012. Comparative Analysis of the Antioxidant Activity of Cassia fistula Extracts. *International Journal of Medicinal Chemis*try, 2012, 157125. doi: 10.1155/2012/157125.
- Jahan, K., Qadri, O.S. & Younis, K., 2020. Dietary Fiber as a Functional Food. In *Functional Food Products and Sustainable Health*. Singapore: Springer, pp. 155–167. doi: 10.1007/978-981-15-4716-4_10.
- Jayanti, E.T., Kasiamdari, R.S. & Daryono, B.S., 2011. Morphological Variation and Phenetic Relationship of Hyacinth Bean (Lablab purpureus (L.) Sweet) in Lombok, West Nusa Tenggara. Proceeding ICBB (The International Conference on Bioscience and Biotechnology), 1 (1), pp.C9-C15.
- Kumar, S. & Pandey, A.K., 2013. Chemistry and biological activities of flavonoids: an overview. *TheScientificWorldJournal*, 2013, 162750. doi: 10.1155/2013/162750.
- Liu, Y.M. et al., 2020. A Carbohydrate-Binding Protein from the Edible Lablab Beans Effectively Blocks the Infections of Influenza Viruses and SARS-CoV-2. *Cell Reports*, 32(6), 108016. doi: 10.1016/ j.celrep.2020.108016.
- Maass, B.L. et al., 2010. Lablab purpureus—A Crop Lost for Africa? *Tropical Plant Biology*, 3(3), pp.123–135. doi: 10.1007/s12042-010-9046-1.
- Maheshu, V., Priyadarsini, D.T. & Sasikumar, J.M., 2013. Effects of processing conditions on the stability of polyphenolic contents and antioxidant capacity of Dolichos lablab L. *Journal of Food Science and Technology*, 50(4), pp.731–738. doi: 10.1007/s13197-011-0387-z.
- Maphosa, Y. et al., 2017. The Role of Legumes in Human Nutrition, IntechOpen. doi: 10.5772/intechopen.69127.
- McGrance, S.J., Cornell, H.J. & Rix, C.J., 1998. A Simple and Rapid Colorimetric Method for the Determination of Amylose in Starch Products. Starch Stärke, 50(4), pp.158–163. doi: 10.1002/(SICI) 1521-379X(199804)50:4<158::AID-STAR158>3.0.CO;2-7.

- Missanga, J.S., Venkataramana, P.B. & Ndakidemi, P.A., 2021. Recent developments in Lablab purpureus genomics: A focus on drought stress tolerance and use of genomic resources to develop stressresilient varieties. *Legume Science*, 3(3), p.e99. doi: 10.1002/leg3.99.
- Mone, D.M.V. & Utami, E.D., 2021. Determinan Kelaparan di Indonesia Tahun 2015-2019. Seminar Nasional Official Statistics, 2021(1), pp.547-556. doi: 10.34123/semnasoffstat.v2021i1.962.
- Mullins, A.P. & Arjmandi, B.H., 2021. Health Benefits of Plant-Based Nutrition: Focus on Beans in Cardiometabolic Diseases. *Nutrients*, 13(2), p.519. doi: 10.3390/nu13020519.
- Piergiovanni, A.R., 2021. Legumes: staple foods used in rituals and festive events of Apulia region (southern Italy). Food, Culture & Society, 24(4), pp.543-561. doi: 10.1080/15528014.2021.1884420.
- Polak, R., Phillips, E.M. & Campbell, A., 2015. Legumes: Health Benefits and Culinary Approaches to Increase Intake. *Clinical Diabetes: A Publication of the American Diabetes Association*, 33(4), pp.198–205. doi: 10.2337/diaclin.33.4.198.
- Pratami, D. et al., 2018. Phytochemical Profile and Antioxidant Activity of Propolis Ethanolic Extract from Tetragonula Bee. *Pharmacognosy Journal*, 10(1), pp.128–135. doi: 10.5530/pj.2018.1.23.
- Purwanti, E., Prihanta, W. & Fauzi, A., 2019a. Nutritional Content Characteristics of Dolichos lablab L. Accessions in Effort to Investigate Functional Food Source. *Atlantis Press*, pp. 166–170. doi: 10.2991/ iccd-19.2019.45.
- Purwanti, E., Prihanta, W. & Fauzi, A., 2019b. The Diversity of Seed Size and Nutrient Content of Lablab Bean from Three Locations in Indonesia. *International Journal of Advanced Engineering, Management* and Science, 5(6), pp.395–402. doi: 10.22161/ijaems.5.6.7.
- Purwanti, E. et al., 2021. Exploring public health benefits of Dolichos lablab as a dietary supplement during the COVID-19 outbreak: A computational study. *Journal of Applied Pharmaceutical Science*, 11, (2), pp.135–140. doi: 10.7324/JAPS.2021.110217.
- Purwanti, E. et al., 2022. Unfolding Biomechanism of Dolichos lablab Bean as A Dietary Supplement in Type 2 Diabetes Mellitus Management through Computational Simulation. *Research Journal of Pharmacy and Technology*, 15(7), pp.3233–3240. doi: 10.52711/0974– 360X.2022.00542.
- Robson, A.A., 2013. Chapter 25 Preventing the Epidemic of Non-Communicable Diseases: An Overview. In R. R. Watson & V. R. Preedy, eds. *Bioactive Food as Dietary Interventions for Liver and Gastrointestinal Disease*. San Diego: Academic Press, pp. 383–400. doi: 10.1016/B978-0-12-397154-8.00016-6.
- Roy, M. et al., 2022. Evaluation of quality parameters and antioxidant properties of protein concentrates and hydrolysates of hyacinth bean (Lablab purpureus). *Legume Science*, 4(2), p.e128. doi: 10.1002/leg3.128.

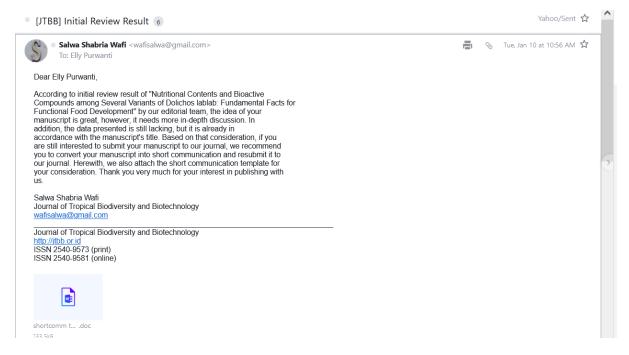
- Shahidi, F. & Ambigaipalan, P., 2015. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects
 A review. *Journal of Functional Foods*, 18, pp.820–897. doi: 10.1016/j.jff.2015.06.018.
- Sharma, K.R. & Giri, G., 2022. Quantification of Phenolic and Flavonoid Content, Antioxidant Activity, and Proximate Composition of Some Legume Seeds Grown in Nepal. *International Journal of Food Science*, 2022, e4629290. doi: 10.1155/2022/4629290.
- Singh, B. et al., 2017. Phenolic composition and antioxidant potential of grain legume seeds: A review. *Food Research International*, 101, pp.1 -16. doi: 10.1016/j.foodres.2017.09.026.
- Singh, N. et al., 2022. Escalate protein plates from legumes for sustainable human nutrition. *Frontiers in Nutrition*, 9, 977986. doi: 10.3389/fnut.2022.977986.
- Singhania, P.R. & Senray, K., 2012. Glycemic response to amylopectin rich starch present in common fasting foods of India. *Nutrition & Food Science*, 42(3), pp.196–203. doi: 10.1108/00346651211228496.
- Sipahli, S. et al., 2021. In vitro antioxidant and apoptotic activity of Lablab purpureus (L.) Sweet isolate and hydrolysates. *Food Science and Technology*, 42, e55220. doi: 10.1590/fst.55220.
- Spiegel, M. et al., 2020. Antioxidant Activity of Selected Phenolic Acids-Ferric Reducing Antioxidant Power Assay and QSAR Analysis of the Structural Features. *Molecules (Basel, Switzerland)*, 25(13), 3088. doi: 10.3390/molecules25133088.
- Subagio, A., 2006. Characterization of hyacinth bean (Lablab purpureus (L.) sweet) seeds from Indonesia and their protein isolate. *Food Chemistry*, 95(1), pp.65–70. doi: 10.1016/j.foodchem.2004.12.042.
- Tayade, R. et al., 2019. Insight Into the Prospects for the Improvement of Seed Starch in Legume—A Review. Frontiers in Plant Science, 10, 1213. doi: 10.3389/fpls.2019.01213.
- Thiex, N., 2009. Evaluation of Analytical Methods for the Determination of Moisture, Crude Protein, Crude Fat, and Crude Fiber in Distillers Dried Grains with Solubles. *Journal of AOAC INTERNATION-AL*, 92(1), pp.61–73. doi: 10.1093/jaoac/92.1.61.
- Zhang, L. et al., 2022. Analysis and Research on Starch Content and Its Processing, Structure and Quality of 12 Adzuki Bean Varieties. *Foods*, 11(21), p.3381. doi: 10.3390/foods11213381.
- Zhao, Y. et al., 2014. In vitro antioxidant activity of extracts from common legumes. *Food Chemistry*, 152, pp.462–466. doi: 10.1016/ j.foodchem.2013.12.006.
- Zheng, C.D. et al., 2010. DPPH-Scavenging Activities and Structure-Activity Relationships of Phenolic Compounds. *Natural Product Communications*, 5(11), pp.1759-1765. doi: 10.1177/1934578X1000501112.

- 1. Author registered to Journal of Tropical Biodiversity and Biotechnology (9-12-2022)
 - Login information
- 2. Article submitted to Journal of Tropical Biodiversity and Biotechnology (12-12-2022)
 - Submission acknowledgment
- 3. Suggested to change article type to short communication (10-1-2023)
 - Initial review result
- 4. Article resubmitted to Journal of Tropical Biodiversity and Biotechnology (15-1-2023)
 - Submission acknowledgment
 - First short communication draft
- 5. First revision: Accepted with major revision (22-2-2023)
 - Article revision letter for authors
 - Review result
- 6. First revision submitted (6-3-2023)
 - Email response to editor
 - Author's response form to reviewer's comments
 - Revised article
- 7. Article accepted for publication (29-3-2023)
 - Decision letter to authors
- 8. Copyedited article sent to author (13-4-2023)
 - Notification letter
- 9. Edited article by author sent to editor (14-4-2023)
 - Edited article with track changes
 - Copyright transfer agreement
- 10. Draft layout sent to author (9-5-2023)
 - Notification letter
 - Draft layout
- 11. Draft layout revision sent to editor (10-5-2023)
 - Email response to editor
- 12. Article published (3-7-2023)
 - Question for publication schedule
 - Publication schedule confirmed
 - Final paper for publication

1. Author registered to Journal of Tropical Biodiversity and Biotechnology (9-12-2022)

- Login information

Miftahul Ilmi <jtbb.biologi@ugm.ac.id> To: Elly Purwanti</jtbb.biologi@ugm.ac.id>	Fri, Dec 9, 2022 at 4:46 PM	☆
Elly Purwanti		
You have now been registered as a user with Journal of Tropical Biodiversity and Biotechnology. We have included your username and password in this		
email, which are needed for all work with this journal through its website. At any point, you can ask to be removed from the journal's list of users by		
contacting me.		
Username: ellypurwanti Password: laba-laba		
Thank you, Miftahul Ilmi		
Journal of Tropical Biodiversity and Biotechnology		
http://jtbb.or.id ISSN 2540-9573 (print)		


2. Article submitted to Journal of Tropical Biodiversity and Biotechnology (12-12-2022)

- Submission acknowledgment

ē	Mon, Dec 12, 2022 at 1:33 PM	<u>ک</u>

3. Suggested to change article type to short communication (10-1-2023)

- Initial review result

- 4. Article resubmitted to Journal of Tropical Biodiversity and Biotechnology (15-1-2023)
 - Submission acknowledgment

← Back ♠ ≪ ►	Archive	↑ Move	🔟 Delete	Spam Spam	•••	▲ ▼	×	
[JTBB] Submission Acknowledgeme	ent					Yahoo/Inbox 🏅	2	^
Miftahul Ilmi <jtbb.biologi@ugm.ac.io To: Elly Purwanti</jtbb.biologi@ugm.ac.io 	4>				Ē	Sun, Jan 15 at 5:45 PM 🏅	22	
Elly Purwanti:								
Thank you for submitting the manuscript, "Nut Compounds among Several Variants of Dolich Functional Food Development" to Journal of T Biotechnology. With the online journal manage you will be able to track its progress through th logging in to the journal web site:	os lablab: Fun ropical Biodive ement system t	damental Fac rsity and hat we are us	ts for					>
Manuscript URL: <u>https://jurnal.ugm.ac.id/jtbb/a</u> Username: ellypurwanti	uthor/submiss	ion/81339						
If you have any questions, please contact me. journal as a venue for your work.	Thank you for	considering t	nis					
Miftahul Ilmi Journal of Tropical Biodiversity and Biotechno	ogy							
Journal of Tropical Biodiversity and Biotechno http://jtbb.or.id ISSN 2540-9573 (print) ISSN 2540-9581 (online)	ogy							
		<	•••					

- First short communication draft

1	Nutritional Contents and Bioactive Compounds among Several Variants of Dolichos
2	lablab: Fundamental Facts for Functional Food Development
3	
4	Elly Purwanti ^{1,*} , Feri Eko Hermanto ^{2,3} , Wahyu Prihanta ¹ , Tutut Indria Permana ¹ , I Gusti
5	Ngurah Agung Wiwekananda ²
6	
7	¹ Department of Educational Biology, Faculty of Teacher Training and Education, University
8	of Muhammadiyah Malang, Malang 65144, East Java, Indonesia
9	² Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas
10	Brawijaya, Malang 65154, East Java, Indonesia
11	³ Bioinformatics Research Center, Indonesian Institute of Bioinformatics (INBIO Indonesia),
12	Malang 65162, East Java, Indonesia
13	
14	*Corresponding author. Tel.: +6281336121486. Email address: purwantielly@ymail.com
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	

25

27 Abstract

To date, the data describing the nutritional and secondary metabolites comparison of Lablab 28 beans is incomplete. Therefore, this study will evaluate the nutritional value, secondary 29 metabolites, and antioxidant activity of three different variants of Lablab beans, i.e., brown, 30 black, and cream beans. The result showed that the brown Lablab beans had outperformed 31 other variants according to their nutritional value and flavonoid content with outstanding 32 33 DPPH scavenging. However, the black beans also showed good bioactive contents through their total phenolic percentage with decent reducing activity in FRAP assay. Developing 34 functional food from Lablab beans should consider this data as a reference. 35 36 Keywords: Antioxidant, Dolichos lablab, functional food, nutritional value, secondary

38

37

metabolites.

Legumes have provided nutritional value for years, contributing to the development of 39 agriculture and food security (Considine et al. 2017). Not only as a staple food in several 40 41 regions of the globe, but legumes also provide valuable nutritional and health benefits (Polak et al. 2015; Piergiovanni 2021). The consumption of legumes has been reported to have 42 protective roles against modern society's health problems, such as diabetes mellitus, 43 44 hyperlipidemia, and cardiovascular diseases (Polak et al. 2015; Hermanto et al. 2022b; Hermanto et al. 2022a). Furthermore, the bioactive compounds in legumes also provide 45 numerous biological activities to achieve physiological homeostasis (Cakir et al. 2019). 46 Those facts are more than enough to describe the vital role of legumes in developing social 47 health status. There are many species of legumes worldwide, but not all beans are known in 48 the society. One of the underutilized legumes is Lablab beans (Dolichos lablab), also known 49 as Koro Komak in Indonesia (Purwanti et al. 2019b). Natively grown in the African continent 50

26

and Indian subcontinent, Lablab beans have become the primary source of energy due to their richness of fiber and carbohydrate contents (Purwanti et al. 2019a; Maass et al. 2010). Moreover, Lablab beans also have superior environmental adaptation due to their ability to grow in drought areas (Missanga et al. 2021). This nature may benefit the maintenance of food security, particularly in lands with a low water supply. Thus, the cultivation of Lablab beans provides a promising result in maintaining primary food stock in dry areas.

Three primary accessions or variants of Lablab beans have been identified in Indonesia 57 (Purwanti et al. 2019b). Those accessions are commonly identified based on the beans' color, 58 i.e., brown, black, and cream (figure 1). Although other variants may exist, those three are 59 commonly found in several areas in Indonesia, such as East Java (Probolinggo and Madura 60 61 Island, and West Nusa Tenggara) (Purwanti et al. 2019b). The previous study reported the bioactivity of bioactive compounds and nutritional values of Lablab beans (Purwanti et al. 62 2021; Purwanti et al. 2022). Nevertheless, no report addresses the nutritional difference 63 among the variants of Lablab beans. Lablab beans have a lot of bioactivities like antioxidant 64 (Maheshu et al. 2013), antidiabetic (Purwanti et al. 2022), antivirus (Purwanti et al. 2021), 65 66 antimicrobial (Bai-Ngew et al. 2021), and anti-inflammatory properties (An et al. 2020). Those bioactivities make it promising as an excellent candidate for functional food 67 development. The details on the nutritional comparison among Lablab beans will provide a 68 69 fundamental guideline for determining suitable variants for functional food development, and it will be addressed by this study. 70

71

Figure 1. The most popular Lablab beans variant found in Indonesia are brown (A), black(B), and cream (C).

The sample of the beans for this study was obtained from Madura Island, East Java, 74 Indonesia. The details of the sample profiles and precise locations as described in previous 75 76 literature (Purwanti et al. 2019b). The beans extraction was processed as the previously mentioned method (Purwanti et al. 2022). The crude fiber, total protein, and crude fat were 77 determined according to the previous protocol (Thiex 2009). Besides, the amylose and 78 amylopectin were also measured colorimetrically using the previously described method 79 (McGrance et al. 1998). On the other hand, IKA C2000 Calorimeter System (IKA Works, 80 Germany) calculated total calories referring to the manufacturer's protocol. 81

To determine the secondary metabolite contents, total phenol and total flavonoid was 82 employed. Total flavonoid was performed referring to the previous protocol with minor 83 modifications (Pratami et al. 2018). Quercetin was used as the standard flavonoid compound. 84 The extract was dissolved in water, then 50 uL of the dissolved extract was mixed with 10 uL 85 of 5% NaNO₂, followed by the addition of 150 µL of water and ten µL of 1 M CH3COONa, 86 consecutively. The sample was then incubated at room temperature for 40 minutes. After 87 incubation, the sample was quantified using a spectrophotometer at 415 nm wavelength. The 88 total flavonoid concentration was described as percent (%) of Quercetin Equivalent (QE) 89 according to the standard curve. 90

Total phenol was measured according to the previous study with minor modifications 91 (Hyun et al. 2014), with Gallic acid determined as the standard for phenolic compound 92 quantification. The sample was diluted in water, and 100 µL of the sample was added by 1 93 mL of Folin Ciocalteu reagent and incubated for five minutes at room temperature with 94 minimum light ambiance. An mL of 7.5% Na₂CO₃ was added to the mixture, followed by 95 incubation for 90 minutes in the same condition mentioned beforehand. Upon incubation, the 96 sample was then quantified spectrophotometrically in 725 nm wavelength. The total phenol 97 was defined as % of Gallic Acid Equivalent (GAE) referring to the build standard curve. 98

The antioxidant activity was measured by DPPH scavenging and a Ferric Reducing Antioxidant Potential (FRAP) assay. The method for DPPH scavenging and FRAP reducing power was performed as described in the earlier literature (Irshad et al. 2012). All data were analysed by one-way ANOVA followed by Least Significant Difference (LSD) post-hoc analysis. The data was determined as significantly different if p < 0.05. The data is then visualized as mean accompanied by standard deviation value.

All Lablab bean variants have good nutrition according to the total fiber, protein total, 105 106 crude fat, amylose, amylopectin, and calories. The fiber content of black Lablab bean was the highest, with 8% fiber content, followed by cream and brown variants (figure 2A). The 107 considerable content of dietary fiber in Lablab beans displayed an immense potential to be 108 109 developed as a functional food. As commonly known, fiber consumption could improve physiological homeostasis, particularly related to lipid and glucose metabolism (Jahan et al. 110 2020). The high fiber content is also suitable for dietary intervention to prevent obesity 111 (Dayib et al. 2020). Meanwhile, from the total protein point of view, the cream beans had the 112 same protein content as brown beans, while the black beans showed the lowest content of 113 total proteins (figure 2B). The high percentage of total protein would be valuable for Lablab 114 beans as the candidate for functional foods since the plant-based protein have primary dietary 115

sources for essential amino acid supply to perform more health benefits (Maphosa et al. 2017). However, the cream beans have the highest percentage of crude fat among all variants (figure 2C, p < 0.05 and < 0.01). The low-fat contents of the Lablab beans showed a high potential as functional food compared to other beans since most legumes contain around 1,5% crude fat total (Etiosa et al. 2017). Low-lipid food provides more health benefits with deleterious high-energy intake (Delaš 2011; Robson 2013). Thus, the low-fat contents in Lablab beans displayed their potential as a functional food candidate.

123 This study also measured the amount of amylose and amylopectin as part of the functional properties and energy source. The black Lablab bean has the highest amylose 124 percentage with 15% amylose content (p < 0.05 and < 0.01), followed by brown and cream 125 126 (figure 2D). In contrast, black beans had the lowest amylopectin (p < 0.01) than other analyzed variants (figure 2E). Similarly, black beans also had the lowest calorie per gram (p 127 < 0.01) compared to other variants of Lablab beans (figure 2F). A food source with high 128 amylopectin induces a better glycemic response, especially during fasting (Singhania & 129 Senray 2012). This starch also provides higher energy intake than low amylopectin sources 130 131 (Singhania & Senray 2012). Moreover, the increasing ratio of amylopectin/amylose has better nutrient digestibility (Gao et al. 2020). Therefore, brown and cream beans may become the 132 potential candidate for functional food. 133

134

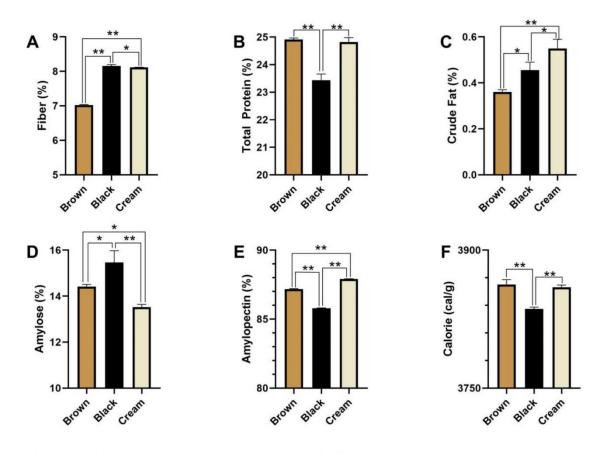


Figure 2. The comparison of primary metabolites and nutritional content among Lablab
beans' variants. In consecutive order: crude fiber (A), total protein (B), crude fat (C), amylose
(D), amylopectin (E), and total calories (F). The data was presented in mean with standard
deviations (n = 3). The asterisk symbol determines the significant difference, with (*) being
significant at 95% and (**) at 99% confidence intervals, respectively.

141

The secondary metabolites of Lablab beans were measured according to the total 142 phenolic and flavonoid contents. Brown beans showed more great content of flavonoid (p < p143 144 0.01), while the cream beans comprised the most negligible flavonoid content (figure 3A). However, the phenolic compound was higher in black beans compared to other Lablab 145 variants (p < 0.05). This result showed that Lablab beans have many phenolic compounds, 146 with the flavonoid group being more abundant in brown beans. In other words, brown beans 147 had the most secondary metabolites in phenolic and flavonoids. In contrast, the other variants 148 may comprise other phenolic compounds like phenolic acids, tannins, and so on (Purwanti et 149

al. 2022). Although flavonoids are the most abundant phenolic compounds with various
biological activities (Kumar & Pandey 2013), other phenolic compounds, either simple
phenols or polyphenols other than flavonoids, have also been reported to have bioactivities to
improve physiological homeostasis, mainly through their antioxidant activity (Shahidi &
Ambigaipalan 2015; Singh et al. 2017).

The high flavonoid content was positively correlated with the antioxidant activity 155 through DPPH scavenging activity, where the brown beans had the most excellent 156 scavenging activity compared to the others (figure 3C). In contrast, ferric-reducing activity 157 has similar results with the phenolic contents as the black beans outperformed the brown and 158 cream beans variants (figure 3D). This result unsurprisingly occurred since there is a 159 160 structure-activity relationship between radical scavenging from different phenolic compounds and the radical scavenging mechanism in DPPH and FRAP assay. Flavonoids have an ortho-161 dihydroxyl structure that plays a role in radical scavenging during DPPH assay by forming an 162 intramolecular hydrogen bond and more stable ortho-hydroxyl phenoxyl radical during the 163 oxidation process of radical scavenging (Zheng et al. 2010). Alternatively, other phenolic 164 165 compounds, such as phenolic acids, have ortho or para position of the hydroxyl group in its benzene ring (Spiegel et al. 2020). Electron Transfer Enthalpy (ETE) is the frequent 166 mechanism during the radical scavenging of phenolic acids in the FRAP assay (Chen et al. 167 168 2020). Despite the different mechanisms and types of bioactive compounds in performing the antioxidant activity, it has been displayed that brown and black beans exhibit solid 169 antioxidant properties through different components of bioactive molecules in each bean. 170 This study shows all Lablab bean variants shows good amount of nutritional value, secondary 171 metabolites, and antioxidant activity. Although the cream variant shows slightly lower 172 nutritional contents and bioactive compound compared to others analyzed Lablab beans, it is 173 still a promising source of food mainly because the nutritional value. 174

Figure 3. The secondary metabolites and antioxidant activity among Lablab beans' variants. Secondary metabolites were determined according to the total flavonoid (A) and total phenolic (B) contents, while the antioxidant activity was determined based on the DPPH scavenging (C) and FRAP analysis (D). The data was presented in mean with standard deviations (n = 3). The asterisk symbol determines the significant difference, with (*) being significant at 95% and (**) at 99% confidence intervals, respectively.

182

183 Author contribution

EP designed the research and acquired the project funding, FE collected and analyzed the data, WP and TIP wrote the manuscript, and IGNAW performed critical review and revision.

187

188 Acknowledgments

The authors thank to Directorate of Research and Community Service (DPPM),
University of Muhammadiyah Malang under PKID research grant scheme in 2022 for
funding this work.

192

193 Conflict of Interest

194 There is no conflict of interest raised in this study.

195 References

- An, J.M. et al., 2020. Dolichos lablab L. extracts as pharmanutrient for stress-related mucosal
 disease in rat stomach. *Journal of Clinical Biochemistry and Nutrition*, 67(1), pp.89–
 101. doi: 10.3164/jcbn.20-11.
- Bai-Ngew, S. et al., 2021. Antimicrobial activity of a crude peptide extract from lablab bean
 (Dolichos lablab) for semi-dried rice noodles shelf-life. *Quality Assurance and Safety* of Crops & Foods, 13(2), pp.25–33. doi: 10.15586/qas.v13i2.882.
- Çakir, Ö. et al., 2019. Nutritional and health benefits of legumes and their distinctive
 genomic properties. *Food Science and Technology*, 39, pp.1–12. doi:
 10.1590/fst.42117.
- Chen, J. et al., 2020. Structure-antioxidant activity relationship of methoxy, phenolic
 hydroxyl, and carboxylic acid groups of phenolic acids. *Scientific Reports*, 10(1),
 p.2611. doi: 10.1038/s41598-020-59451-z.
- Considine, M.J., Siddique, K.H.M. & Foyer, C.H., 2017. Nature's pulse power: legumes,
 food security and climate change. *Journal of Experimental Botany*, 68(8), pp.1815–
 1818. doi: 10.1093/jxb/erx099.
- Dayib, M., Larson, J. & Slavin, J., 2020. Dietary fibers reduce obesity-related disorders:
 mechanisms of action. *Current Opinion in Clinical Nutrition & Metabolic Care*,
 23(6), pp.445–450. doi: 10.1097/MCO.0000000000696.
- Delaš, I., 2011. Benefits and hazards of fat-free diets. *Trends in Food Science & Technology*,
 22(10), pp.576–582. doi: 10.1016/j.tifs.2011.08.008.
- Etiosa, O.R., Chika, N.B. & Benedicta, A., 2017. Mineral and Proximate Composition of
 Soya Bean. Asian Journal of Physical and Chemical Sciences, pp.1–6. doi:
 10.9734/AJOPACS/2017/38530.
- Gao, X. et al., 2020. Effects of Dietary Starch Structure on Growth Performance, Serum
 Glucose–Insulin Response, and Intestinal Health in Weaned Piglets. *Animals*, 10(3),
 p.543. doi: 10.3390/ani10030543.
- Hermanto, F.E. et al., 2022a. On The Hypolipidemic Activity of Elicited Soybeans:
 Evidences Based on Computational Analysis. *Indonesian Journal of Chemistry*, 22(6),
 pp.1626–1636. doi: 10.22146/ijc.75777.
- Hermanto, F.E. et al., 2022b. Understanding hypocholesterolemic activity of soy isoflavones:
 Completing the puzzle through computational simulations. *Journal of Biomolecular Structure and Dynamics*, in press, pp.1–7. doi: 10.1080/07391102.2022.2148752.
- Hyun, T.K., Kim, H.-C. & Kim, J.-S., 2014. Antioxidant and antidiabetic activity of Thymus
 quinquecostatus Celak. *Industrial Crops and Products*, 52, pp.611–616. doi:
 10.1016/j.indcrop.2013.11.039.
- Irshad, M. et al., 2012. Comparative Analysis of the Antioxidant Activity of Cassia fistula
 Extracts. *International Journal of Medicinal Chemistry*, 2012, p.157125. doi:
 10.1155/2012/157125.

- Jahan, K., Qadri, O.S. & Younis, K., 2020. Dietary Fiber as a Functional Food. In S. Ahmad
 & N. A. Al-Shabib, eds. *Functional Food Products and Sustainable Health*.
 Singapore: Springer, pp. 155–167. doi: 10.1007/978-981-15-4716-4_10.
- Kumar, S. & Pandey, A.K., 2013. Chemistry and biological activities of flavonoids: an
 overview. *TheScientificWorldJournal*, 2013, p.162750. doi: 10.1155/2013/162750.
- Maass, B.L. et al., 2010. Lablab purpureus—A Crop Lost for Africa? *Tropical Plant Biology*, 3(3), pp.123–135. doi: 10.1007/s12042-010-9046-1.
- Maheshu, V., Priyadarsini, D.T. & Sasikumar, J.M., 2013. Effects of processing conditions
 on the stability of polyphenolic contents and antioxidant capacity of Dolichos lablab
 L. *Journal of Food Science and Technology*, 50(4), pp.731–738. doi: 10.1007/s13197011-0387-z.
- Maphosa, Y. et al., 2017. *The Role of Legumes in Human Nutrition*, IntechOpen. doi: 10.5772/intechopen.69127.
- McGrance, S.J., Cornell, H.J. & Rix, C.J., 1998. A Simple and Rapid Colorimetric Method
 for the Determination of Amylose in Starch Products. *Starch Stärke*, 50(4), pp.158–
 163. doi: 10.1002/(SICI)1521-379X(199804)50:4<158::AID-STAR158>3.0.CO;2-7.
- Missanga, J.S., Venkataramana, P.B. & Ndakidemi, P.A., 2021. Recent developments in
 Lablab purpureus genomics: A focus on drought stress tolerance and use of genomic
 resources to develop stress-resilient varieties. *Legume Science*, 3(3), p.e99. doi:
 10.1002/leg3.99.
- Piergiovanni, A.R., 2021. Legumes: staple foods used in rituals and festive events of Apulia
 region (southern Italy). *Food, Culture & Society*, 24(4), pp.543–561. doi:
 10.1080/15528014.2021.1884420.
- Polak, R., Phillips, E.M. & Campbell, A., 2015. Legumes: Health Benefits and Culinary
 Approaches to Increase Intake. *Clinical Diabetes : A Publication of the American Diabetes Association*, 33(4), pp.198–205. doi: 10.2337/diaclin.33.4.198.
- Pratami, D. et al., 2018. Phytochemical Profile and Antioxidant Activity of Propolis
 Ethanolic Extract from Tetragonula Bee. *Pharmacognosy Journal*, 10(1), pp.128–135.
 doi: 10.5530/pj.2018.1.23.
- Purwanti, E. et al., 2021. Exploring public health benefits of Dolichos lablab as a dietary
 supplement during the COVID-19 outbreak: A computational study. *Journal of Applied Pharmaceutical Science*, 11,(2), pp.135–140. doi:
 10.7324/JAPS.2021.110217.
- Purwanti, E. et al., 2022. Unfolding Biomechanism of Dolichos lablab Bean as A Dietary
 Supplement in Type 2 Diabetes Mellitus Management through Computational
 Simulation. *Research Journal of Pharmacy and Technology*, 15(7), pp.3233–3240.
 doi: 10.52711/0974-360X.2022.00542.
- Purwanti, E., Prihanta, W. & Fauzi, A., 2019a. Nutritional Content Characteristics of
 Dolichos lablab L. Accessions in Effort to Investigate Functional Food Source. In 6th

- International Conference on Community Development (ICCD 2019). Atlantis Press,
 pp. 166–170. doi: 10.2991/iccd-19.2019.45.
- Purwanti, E., Prihanta, W. & Fauzi, A., 2019b. The Diversity of Seed Size and Nutrient
 Content of Lablab Bean from Three Locations in Indonesia. *International Journal of Advanced Engineering, Management and Science*, 5(6), pp.395–402. doi:
 10.22161/ijaems.5.6.7.
- Robson, A.A., 2013. Chapter 25 Preventing the Epidemic of Non-Communicable Diseases:
 An Overview. In R. R. Watson & V. R. Preedy, eds. *Bioactive Food as Dietary Interventions for Liver and Gastrointestinal Disease*. San Diego: Academic Press, pp.
 383–400. doi: 10.1016/B978-0-12-397154-8.00016-6.
- Shahidi, F. & Ambigaipalan, P., 2015. Phenolics and polyphenolics in foods, beverages and
 spices: Antioxidant activity and health effects A review. *Journal of Functional Foods*, 18, pp.820–897. doi: 10.1016/j.jff.2015.06.018.
- Singh, B. et al., 2017. Phenolic composition and antioxidant potential of grain legume seeds:
 A review. *Food Research International*, 101, pp.1–16. doi:
 10.1016/j.foodres.2017.09.026.
- Singhania, P.R. & Senray, K., 2012. Glycemic response to amylopectin rich starch present in
 common fasting foods of India. *Nutrition & Food Science*, 42(3), pp.196–203. doi:
 10.1108/00346651211228496.
- Spiegel, M. et al., 2020. Antioxidant Activity of Selected Phenolic Acids-Ferric Reducing
 Antioxidant Power Assay and QSAR Analysis of the Structural Features. *Molecules (Basel, Switzerland)*, 25(13), p.3088. doi: 10.3390/molecules25133088.
- Thiex, N., 2009. Evaluation of Analytical Methods for the Determination of Moisture, Crude
 Protein, Crude Fat, and Crude Fiber in Distillers Dried Grains with Solubles. *Journal* of AOAC INTERNATIONAL, 92(1), pp.61–73. doi: 10.1093/jaoac/92.1.61.
- Zheng, C.-D. et al., 2010. DPPH-Scavenging Activities and Structure-Activity Relationships
 of Phenolic Compounds. *Natural Product Communications*, 5(11), pp.1759–1765.
 doi: 10.1177/1934578X1000501112.

301

5. First revision: Accepted with major revision (22-2-2023)

- Article revision letter for authors

← Back ♠ ♠ ➡	🖬 Archive 🖍 Move 📅 Delete 😵 Spam 🚥	• • ×
Sent: Wednesday, Febr To: Elly Purwanti <purw Cc: Feri Eko Hermanto</purw 	<feri.eko.hermanto@hotmail.com>; Wahyu Prihanta <wahyuprihanta@gmail.com>; Tutut Indria Permana ac.id>; I Gusti Ngurah Agung Wiwekananda <wiwekananda@student.ub.ac.id></wiwekananda@student.ub.ac.id></wahyuprihanta@gmail.com></feri.eko.hermanto@hotmail.com>	
Dear Elly Purwanti,		
Bioactive Compound Facts for Functional F	itting your work, titled "Nutritional Contents and ts among Several Variants of Dolichos lablab: Fundamental Food Development", to Journal of Tropical Biodiversity After reviewing your submission, we found that your t for publication.	6
publishing standard. be reviewed again. P	nat the manuscript needs a major revision to fulfill our We invite you to do the revision and return it to us to Please activate the track changes mode in MS Word to We enclosed the reviewer comments for you to learn.	C
Please send us answ file.	wers to the reviewers' comments (attached) in a separate	
	e your revision within four (4) weeks. If you fail to within the designated time, we may have to decline nout notice.	
If you have any ques	stions, please feel free to contact us.	
Sincerely yours, Tanti Agustina		

- Review result

Review Form

Overall statement or summary of the article and its findings in your own words *

In general, this article is well written, and the study's findings can provide fresh information about phytochemical and antioxidant analyses of Lablabs bean growing in Indonesia. However, there are numerous errors that must be rectified before this article can be accepted and published.

Overall strengths of the article and what impact it might have in your field *

The strength of this article lies in a study of lablab beans that have been obtained in Indonesia

Specific comments on the weaknesses of the article and what could be done to improve it *

Title

Tittle- The species name must be written in italics.

Introduction

Images of sample must be scaled to reflect their true size.

Methodology

Please revised the method.

Explain in fully how the samples were collected (sampling time)?

Line 52, how much beans are extracted. Explain the specific procedure of the extraction process. detail

The extraction procedure is a critical step in this research. The author, however, fails to explain all the critical processes. The author just informs the reader to refer to past studies. Please describe the extraction procedure. What kind of solvent is employed? Authors should not expect readers to look up additional references to comprehend the experiments.

Please explain in detail the method for crude fibre, total protein, and crude fat analysis.

Result and discussion

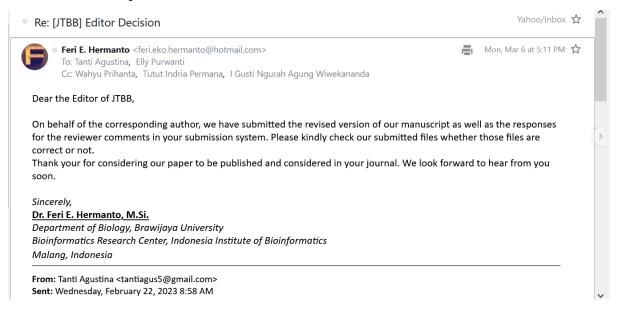

Overall, the discussion is well written

Figure 3, the term secondary metabolite refers to phytochemical content. Please change it.

Keputusan tidak consistent dengan kaedah. Rujuk Figure 2. Terdapat 6 analisis keputusan, tetapi berdasarkan kaedah tiada eksperimen bagi

6. First revision submitted (6-3-2023)

- Email response to editor

- Author's response form to reviewer's comments

Journal of Tropical Biodiversity and Biotechnology

Author's Response Form to Reviewer's Comments

Manuscript Title: Nutritional Contents and Bioactive Compounds among Several Variants of Dolichos lablab: Fundamental Facts for Functional Food Development

No.	Reviewer's Comments	Author's Response	Line
-----	----------------------------	-------------------	------

Reviewer B

No evidence that these beans have been submitted to a herbarium for certification. PCR of DNA markers may also be used to confirm the identification of species.

<u>Response:</u> Thank you for your suggestion. However, due to funding limitations, we did not perform the molecular barcoding analysis. We continue the previous works related with this species, so we think that the taxonomic identity was confirmed and not confused with other related taxa.

Figure 2 and Figure 3 are best presented as a table as well to provide numerical values to their experiments.

<u>Response:</u> thank you. We have changed the figure into tables for better description.

The authors mentioned that based on their results, these beans are good candidates as functional food but fails to provide any in depth discussion on the benefits.

<u>Response:</u> We have added some discussions to strengthen our arguments.

The authors describe in detail regarding the chemistry behind DPPH and FRAP assay. They also state that brown and black beans exhibit solid antioxidant properties through different components of bioactive molecules in each bean but fails to mention what these bioactive molecules are.

<u>Response:</u> We have added the information about the biomolecules according to the previous work. The discussion is superficial. No reference / comparisons to other legumes were made to justify their

claims that these beans are superior functional food candidates.

<u>Response:</u> More comprehensive discussion has been made. The current results also compared to the previous results from different kind of beans to improve the arguments in the discussion section. Also, there in no solid conclusion to their manuscript.

<u>Response:</u> We have modified the conclusion to improve the point of our study.

1.	too general. Kindly specify.	Several citations were added to specify the health benefits.	97
2.	Reconsider/elaborate on statement. In regions where food is scarce, functional food with greater fat content are better to overcome famine.	We have added the information of the data for hunger case in Indonesia to enrich our discussion at those points.	101-102

3.	Elaborate on statement	A sentence had been added to improve the clarity of the previous sentence.	113
4.	This is best presented as a table	The data have been restructured as table	117-118
5.	rephrase statement	The sentence has been erased and combined with the next sentence. We think that the next sentence is suitable enough to fulfill our discussion and not contra with the data.	129-130
6.	rephrase statement	The statement had been rephrased.	139-140
7.	Rephrase.	The statement had been amended.	141
8.	frequently occurs?	The sentence was revised to improve the clarity and compliance with the cited reference.	148-149
9.	Rephrase statement	The statement "through different components of bioactive molecules in each bean" has been deleted.	150-153
10.	What are these bioactive molecules? How do you know they are different?	Actually, the result from total flavonoid and total phenolic compound have roughly described the difference of the bioactive compounds. Nevertheless, we do realize that those data are still insufficient to be discussed as in the previous statement. Thus, we think it would be better to delete that statement.	152-153
11.	showsshows Rephrase	First "shows" was replaced by "have"	153

12.	promising source of food?	Thank you for your critical evaluations. We did a revision with that sentence to improve the clarity.	156
13.	Grant number?	The grant number or contract number has been added to the funding statement.	172
Review Overall	rer D , the discussion is well written		
1.	Title Tittle- The species name must be written in italics.	The species name has been italicized.	
2.	Introduction Images of sample must be scaled to reflect their true size.	The scaled picture of each variant has been added to replace the old one.	
Methoo Please	dology revised the method.		
3.	how much beans are extracted. Explain the specific procedure of the extraction process. detail	The extraction method was added.	52
4.	Explain in fully how the samples were collected (sampling time)?	We have added the information about the sampling of the beans.	
5.	The extraction procedure is a critical step in this research. The author, however, fails to explain all the critical processes. The author just informs the reader to refer to past studies. Please describe the extraction procedure. What kind of solvent is employed? Authors should not expect readers to look up additional references to comprehend the experiments.	The extraction method was added. Thank you for your critical evaluation.	

6.	Please explain in detail the method for crude fibre, total protein, and crude fat analysis.	Since no protocol modification from the cited reference, we think it's better to describe the method as it. Also, our paper was submitted as short communication paper, so the brief description of common method for crude fiber, total protein, and crude fat analysis would be less informative and make our paper exceed the maximum allowed words. Otherwise, we will revise it in the second round of revision if the method is urgently needed to be elaborated in the paragraph. Thank you for your suggestion.		
Result and discussion				
7.	The decision is not consistent with the rules. Refer to Figure 2. There are 6 decision analyses, but based on the method there is no experiment for.	Figure 2 describes about the content of fiber, protein, fat, amylose, amylopectin, and total calorie from each bean's variant. We have mentioned the method for each experiment in the figure 2 (now revised as a table following the suggestion from another reviewer) at the methodological section. We referred to a paper from Thiex (2009) to perform an analysis for crude fiber, protein, and fat content. Also, we referred to a protocol from McGrance et al. (1998) to determine the amylose and amylopectin content in our samples. Also, IKA C2000 Calorimeter System (IKA Works, Germany) was employed to calculate the total calories. We think that the method for figure 2's data is already covered in that paragraph. Thank you for your critical evaluations. If there is some		

		misunderstanding, please kindly elaborate your suggestion in the next round of reviewing step. We really acknowledge for your critical evaluations and constructive comments in our present works.	
8.	Figure 3, the term secondary metabolite refers to phytochemical content. Please change it.	We have modified that term in the revised version as table caption (as suggested by other reviewer). Thank you for your suggestion to enhance the clarity of our sentences.	

- Revised article

1	Nutritional Contents and Bioactive Compounds among Several Variants of Dolichos
2	lablab: Fundamental Facts for Functional Food Development
3	
4	Elly Purwanti ^{1,*} , Feri Eko Hermanto ^{2,3} , Wahyu Prihanta ¹ , Tutut Indria Permana ¹ , I Gusti
5	Ngurah Agung Wiwekananda ²
6	
7	¹ Department of Educational Biology, Faculty of Teacher Training and Education, University
8	of Muhammadiyah Malang, Malang 65144, East Java, Indonesia
9	² Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas
10	Brawijaya, Malang 65154, East Java, Indonesia
11	³ Bioinformatics Research Center, Indonesian Institute of Bioinformatics (INBIO Indonesia),
12	Malang 65162, East Java, Indonesia
13	
14	*Corresponding author. Tel.: +6281336121486. Email address: purwantielly@ymail.com
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

27 Abstract

To date, the data describing the nutritional and secondary metabolites comparison of Lablab 28 29 beans is incomplete. Therefore, this study will evaluate the nutritional value, secondary metabolites, and antioxidant activity of three different variants of Lablab beans, i.e., brown, 30 black, and cream beans. The result showed that the brown Lablab beans had outperformed 31 other variants according to their nutritional value and flavonoid content with outstanding 32 DPPH scavenging. However, the black beans also showed good bioactive contents through 33 their total phenolic percentage with decent reducing activity in FRAP assay. Developing 34 functional food from Lablab beans should consider this data as a reference. 35 36 Keywords: Antioxidant, Dolichos lablab, functional food, nutritional value, secondary

37 metabolites.

38

Legumes have provided nutritional value for years, contributing to the development of 39 agriculture and food security (Considine et al. 2017). Not only as a staple food in several 40 regions of the globe, but legumes also provide valuable nutritional and health benefits (Polak 41 et al. 2015; Piergiovanni 2021). The consumption of legumes has been reported to have 42 protective roles against modern society's health problems, such as diabetes mellitus, 43 hyperlipidemia, and cardiovascular diseases (Polak et al. 2015; Hermanto et al. 2022b; 44 Hermanto et al. 2022a). Furthermore, the bioactive compounds in legumes also provide 45 numerous biological activities to achieve physiological homeostasis (Cakir et al. 2019). 46 Those facts are more than enough to describe the vital role of legumes in developing social 47 health status. There are many species of legumes worldwide, but not all beans are known in 48 49 the society. One of the underutilized legumes is Lablab beans (Dolichos lablab), also known as Koro Komak in Indonesia (Purwanti et al. 2019b). Natively grown in the African continent 50

26

and Indian subcontinent, Lablab beans have become the primary source of energy due to their
richness of fiber and carbohydrate contents (Purwanti et al. 2019a; Maass et al. 2010).
Moreover, Lablab beans also have superior environmental adaptation due to their ability to
grow in drought areas (Missanga et al. 2021). This nature may benefit the maintenance of
food security, particularly in lands with a low water supply. Thus, the cultivation of Lablab
beans provides a promising result in maintaining primary food stock in dry areas.

Three primary accessions or variants of Lablab beans have been identified in Indonesia 57 (Purwanti et al. 2019b). Those accessions are commonly identified based on the beans' color, 58 i.e., brown, black, and cream (figure 1). Although other variants may exist, those three are 59 60 commonly found in several areas in Indonesia, such as East Java (Probolinggo and Madura 61 Island, and West Nusa Tenggara) (Purwanti et al. 2019b). The previous study reported the bioactivity of bioactive compounds and nutritional values of Lablab beans (Purwanti et al. 62 2021; Purwanti et al. 2022). Nevertheless, no report addresses the nutritional difference 63 among the variants of Lablab beans. Lablab beans have a lot of bioactivities like antioxidant 64 (Maheshu et al. 2013), antidiabetic (Purwanti et al. 2022), antivirus (Purwanti et al. 2021), 65 66 antimicrobial (Bai-Ngew et al. 2021), and anti-inflammatory properties (An et al. 2020). Those bioactivities make it promising as an excellent candidate for functional food 67 68 development. The details on the nutritional comparison among Lablab beans will provide a fundamental guideline for determining suitable variants for functional food development, and 69 it will be addressed by this study. 70

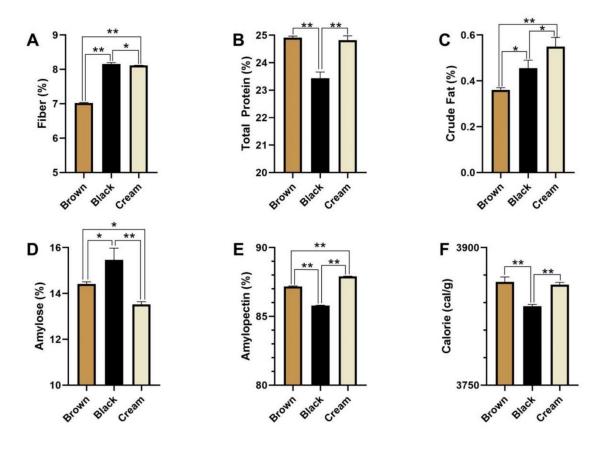
71

Figure 1. The most popular Lablab beans variant found in Indonesia are brown (A), black(B), and cream (C).

The sample of the beans for this study was obtained from Madura Island, East Java, 74 Indonesia. The details of the sample profiles and precise locations as described in previous 75 literature (Purwanti et al. 2019b). The beans extraction was processed as the previously 76 mentioned method (Purwanti et al. 2022). The crude fiber, total protein, and crude fat were 77 determined according to the previous protocol (Thiex 2009). Besides, the amylose and 78 amylopectin were also measured colorimetrically using the previously described method 79 (McGrance et al. 1998). On the other hand, IKA C2000 Calorimeter System (IKA Works, 80 Germany) calculated total calories referring to the manufacturer's protocol. 81

To determine the secondary metabolite contents, total phenol and total flavonoid was 82 employed. Total flavonoid was performed referring to the previous protocol with minor 83 modifications (Pratami et al. 2018). Quercetin was used as the standard flavonoid compound. 84 The extract was dissolved in water, then 50 μ L of the dissolved extract was mixed with 10 μ L 85 of 5% NaNO₂, followed by the addition of 150 µL of water and ten µL of 1 M CH3COONa, 86 consecutively. The sample was then incubated at room temperature for 40 minutes. After 87 incubation, the sample was quantified using a spectrophotometer at 415 nm wavelength. The 88 89 total flavonoid concentration was described as percent (%) of Quercetin Equivalent (QE) according to the standard curve. 90

91 Total phenol was measured according to the previous study with minor modifications (Hyun et al. 2014), with Gallic acid determined as the standard for phenolic compound 92 quantification. The sample was diluted in water, and 100 µL of the sample was added by 1 93 94 mL of Folin Ciocalteu reagent and incubated for five minutes at room temperature with minimum light ambiance. An mL of 7.5% Na₂CO₃ was added to the mixture, followed by 95 incubation for 90 minutes in the same condition mentioned beforehand. Upon incubation, the 96 sample was then quantified spectrophotometrically in 725 nm wavelength. The total phenol 97 was defined as % of Gallic Acid Equivalent (GAE) referring to the build standard curve. 98


The antioxidant activity was measured by DPPH scavenging and a Ferric Reducing Antioxidant Potential (FRAP) assay. The method for DPPH scavenging and FRAP reducing power was performed as described in the earlier literature (Irshad et al. 2012). All data were analysed by one-way ANOVA followed by Least Significant Difference (LSD) post-hoc analysis. The data was determined as significantly different if p < 0.05. The data is then visualized as mean accompanied by standard deviation value.

All Lablab bean variants have good nutrition according to the total fiber, protein total, 105 crude fat, amylose, amylopectin, and calories. The fiber content of black Lablab bean was the 106 highest, with 8% fiber content, followed by cream and brown variants (figure 2A). The 107 108 considerable content of dietary fiber in Lablab beans displayed an immense potential to be developed as a functional food. As commonly known, fiber consumption could improve 109 physiological homeostasis, particularly related to lipid and glucose metabolism (Jahan et al. 110 2020). The high fiber content is also suitable for dietary intervention to prevent obesity 111 (Dayib et al. 2020). Meanwhile, from the total protein point of view, the cream beans had the 112 same protein content as brown beans, while the black beans showed the lowest content of 113 total proteins (figure 2B). The high percentage of total protein would be valuable for Lablab 114 beans as the candidate for functional foods since the plant-based protein have primary dietary 115

sources for essential amino acid supply to perform more health benefits (Maphosa et al. 2017). However, the cream beans have the highest percentage of crude fat among all variants (figure 2C, p < 0.05 and < 0.01). The low-fat contents of the Lablab beans showed a high potential as functional food compared to other beans since most legumes contain around 1,5% crude fat total (Etiosa et al. 2017). Low-lipid food provides more health benefits with deleterious high-energy intake (Delaš 2011; Robson 2013). Thus, the low-fat contents in Lablab beans displayed their potential as a functional food candidate.

This study also measured the amount of amylose and amylopectin as part of the 123 functional properties and energy source. The black Lablab bean has the highest amylose 124 percentage with 15% amylose content (p < 0.05 and < 0.01), followed by brown and cream 125 (figure 2D). In contrast, black beans had the lowest amylopectin (p < 0.01) than other 126 analyzed variants (figure 2E). Similarly, black beans also had the lowest calorie per gram (p 127 < 0.01) compared to other variants of Lablab beans (figure 2F). A food source with high 128 amylopectin induces a better glycemic response, especially during fasting (Singhania & 129 Senray 2012). This starch also provides higher energy intake than low amylopectin sources 130 (Singhania & Senray 2012). Moreover, the increasing ratio of amylopectin/amylose has better 131 nutrient digestibility (Gao et al. 2020). Therefore, brown and cream beans may become the 132 potential candidate for functional food. 133

134

135

Figure 2. The comparison of primary metabolites and nutritional content among Lablab
beans' variants. In consecutive order: crude fiber (A), total protein (B), crude fat (C), amylose
(D), amylopectin (E), and total calories (F). The data was presented in mean with standard
deviations (n = 3). The asterisk symbol determines the significant difference, with (*) being
significant at 95% and (**) at 99% confidence intervals, respectively.

141

The secondary metabolites of Lablab beans were measured according to the total 142 phenolic and flavonoid contents. Brown beans showed more great content of flavonoid (p < 143 0.01), while the cream beans comprised the most negligible flavonoid content (figure 3A). 144 However, the phenolic compound was higher in black beans compared to other Lablab 145 variants (p < 0.05). This result showed that Lablab beans have many phenolic compounds, 146 with the flavonoid group being more abundant in brown beans. In other words, brown beans 147 had the most secondary metabolites in phenolic and flavonoids. In contrast, the other variants 148 149 may comprise other phenolic compounds like phenolic acids, tannins, and so on (Purwanti et al. 2022). Although flavonoids are the most abundant phenolic compounds with various
biological activities (Kumar & Pandey 2013), other phenolic compounds, either simple
phenols or polyphenols other than flavonoids, have also been reported to have bioactivities to
improve physiological homeostasis, mainly through their antioxidant activity (Shahidi &
Ambigaipalan 2015; Singh et al. 2017).

The high flavonoid content was positively correlated with the antioxidant activity 155 through DPPH scavenging activity, where the brown beans had the most excellent 156 scavenging activity compared to the others (figure 3C). In contrast, ferric-reducing activity 157 has similar results with the phenolic contents as the black beans outperformed the brown and 158 159 cream beans variants (figure 3D). This result unsurprisingly occurred since there is a 160 structure-activity relationship between radical scavenging from different phenolic compounds and the radical scavenging mechanism in DPPH and FRAP assay. Flavonoids have an ortho-161 dihydroxyl structure that plays a role in radical scavenging during DPPH assay by forming an 162 intramolecular hydrogen bond and more stable ortho-hydroxyl phenoxyl radical during the 163 oxidation process of radical scavenging (Zheng et al. 2010). Alternatively, other phenolic 164 compounds, such as phenolic acids, have ortho or para position of the hydroxyl group in its 165 benzene ring (Spiegel et al. 2020). Electron Transfer Enthalpy (ETE) is the frequent 166 mechanism during the radical scavenging of phenolic acids in the FRAP assay (Chen et al. 167 2020). Despite the different mechanisms and types of bioactive compounds in performing the 168 antioxidant activity, it has been displayed that brown and black beans exhibit solid 169 antioxidant properties through different components of bioactive molecules in each bean. 170 This study shows all Lablab bean variants shows good amount of nutritional value, secondary 171 metabolites, and antioxidant activity. Although the cream variant shows slightly lower 172 nutritional contents and bioactive compound compared to others analyzed Lablab beans, it is 173 still a promising source of food mainly because the nutritional value. 174

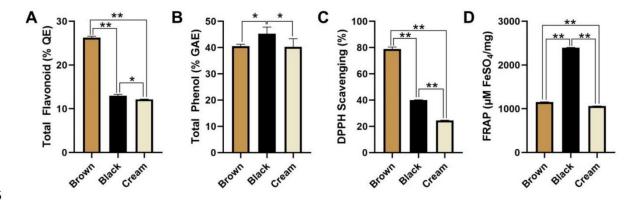


Figure 3. The secondary metabolites and antioxidant activity among Lablab beans' variants. Secondary metabolites were determined according to the total flavonoid (A) and total phenolic (B) contents, while the antioxidant activity was determined based on the DPPH scavenging (C) and FRAP analysis (D). The data was presented in mean with standard deviations (n = 3). The asterisk symbol determines the significant difference, with (*) being significant at 95% and (**) at 99% confidence intervals, respectively.

182

183 Author contribution

EP designed the research and acquired the project funding, FE collected and analyzed the data, WP and TIP wrote the manuscript, and IGNAW performed critical review and revision.

187

188 Acknowledgments

The authors thank to Directorate of Research and Community Service (DPPM),
University of Muhammadiyah Malang under PKID research grant scheme in 2022 for
funding this work.

192

193 Conflict of Interest

194 There is no conflict of interest raised in this study.

195 References

- An, J.M. et al., 2020. Dolichos lablab L. extracts as pharmanutrient for stress-related mucosal
 disease in rat stomach. *Journal of Clinical Biochemistry and Nutrition*, 67(1), pp.89–
 101. doi: 10.3164/jcbn.20-11.
- Bai-Ngew, S. et al., 2021. Antimicrobial activity of a crude peptide extract from lablab bean
 (Dolichos lablab) for semi-dried rice noodles shelf-life. *Quality Assurance and Safety* of Crops & Foods, 13(2), pp.25–33. doi: 10.15586/qas.v13i2.882.
- Çakir, Ö. et al., 2019. Nutritional and health benefits of legumes and their distinctive
 genomic properties. *Food Science and Technology*, 39, pp.1–12. doi:
 10.1590/fst.42117.
- Chen, J. et al., 2020. Structure-antioxidant activity relationship of methoxy, phenolic
 hydroxyl, and carboxylic acid groups of phenolic acids. *Scientific Reports*, 10(1),
 p.2611. doi: 10.1038/s41598-020-59451-z.
- Considine, M.J., Siddique, K.H.M. & Foyer, C.H., 2017. Nature's pulse power: legumes,
 food security and climate change. *Journal of Experimental Botany*, 68(8), pp.1815–
 1818. doi: 10.1093/jxb/erx099.
- Dayib, M., Larson, J. & Slavin, J., 2020. Dietary fibers reduce obesity-related disorders:
 mechanisms of action. *Current Opinion in Clinical Nutrition & Metabolic Care*,
 23(6), pp.445–450. doi: 10.1097/MCO.0000000000696.
- Delaš, I., 2011. Benefits and hazards of fat-free diets. *Trends in Food Science & Technology*,
 22(10), pp.576–582. doi: 10.1016/j.tifs.2011.08.008.
- Etiosa, O.R., Chika, N.B. & Benedicta, A., 2017. Mineral and Proximate Composition of
 Soya Bean. Asian Journal of Physical and Chemical Sciences, pp.1–6. doi:
 10.9734/AJOPACS/2017/38530.
- Gao, X. et al., 2020. Effects of Dietary Starch Structure on Growth Performance, Serum
 Glucose–Insulin Response, and Intestinal Health in Weaned Piglets. *Animals*, 10(3),
 p.543. doi: 10.3390/ani10030543.
- Hermanto, F.E. et al., 2022a. On The Hypolipidemic Activity of Elicited Soybeans:
 Evidences Based on Computational Analysis. *Indonesian Journal of Chemistry*, 22(6),
 pp.1626–1636. doi: 10.22146/ijc.75777.
- Hermanto, F.E. et al., 2022b. Understanding hypocholesterolemic activity of soy isoflavones:
 Completing the puzzle through computational simulations. *Journal of Biomolecular Structure and Dynamics*, in press, pp.1–7. doi: 10.1080/07391102.2022.2148752.
- Hyun, T.K., Kim, H.-C. & Kim, J.-S., 2014. Antioxidant and antidiabetic activity of Thymus
 quinquecostatus Celak. *Industrial Crops and Products*, 52, pp.611–616. doi:
 10.1016/j.indcrop.2013.11.039.
- Irshad, M. et al., 2012. Comparative Analysis of the Antioxidant Activity of Cassia fistula
 Extracts. *International Journal of Medicinal Chemistry*, 2012, p.157125. doi:
 10.1155/2012/157125.

- Jahan, K., Qadri, O.S. & Younis, K., 2020. Dietary Fiber as a Functional Food. In S. Ahmad
 & N. A. Al-Shabib, eds. *Functional Food Products and Sustainable Health*.
 Singapore: Springer, pp. 155–167. doi: 10.1007/978-981-15-4716-4 10.
- Kumar, S. & Pandey, A.K., 2013. Chemistry and biological activities of flavonoids: an
 overview. *TheScientificWorldJournal*, 2013, p.162750. doi: 10.1155/2013/162750.
- Maass, B.L. et al., 2010. Lablab purpureus—A Crop Lost for Africa? *Tropical Plant Biology*,
 3(3), pp.123–135. doi: 10.1007/s12042-010-9046-1.
- Maheshu, V., Priyadarsini, D.T. & Sasikumar, J.M., 2013. Effects of processing conditions
 on the stability of polyphenolic contents and antioxidant capacity of Dolichos lablab
 L. *Journal of Food Science and Technology*, 50(4), pp.731–738. doi: 10.1007/s13197011-0387-z.
- Maphosa, Y. et al., 2017. *The Role of Legumes in Human Nutrition*, IntechOpen. doi: 10.5772/intechopen.69127.
- McGrance, S.J., Cornell, H.J. & Rix, C.J., 1998. A Simple and Rapid Colorimetric Method
 for the Determination of Amylose in Starch Products. *Starch Stärke*, 50(4), pp.158–
 163. doi: 10.1002/(SICI)1521-379X(199804)50:4<158::AID-STAR158>3.0.CO;2-7.
- Missanga, J.S., Venkataramana, P.B. & Ndakidemi, P.A., 2021. Recent developments in
 Lablab purpureus genomics: A focus on drought stress tolerance and use of genomic
 resources to develop stress-resilient varieties. *Legume Science*, 3(3), p.e99. doi:
 10.1002/leg3.99.
- Piergiovanni, A.R., 2021. Legumes: staple foods used in rituals and festive events of Apulia
 region (southern Italy). *Food, Culture & Society*, 24(4), pp.543–561. doi:
 10.1080/15528014.2021.1884420.
- Polak, R., Phillips, E.M. & Campbell, A., 2015. Legumes: Health Benefits and Culinary
 Approaches to Increase Intake. *Clinical Diabetes : A Publication of the American Diabetes Association*, 33(4), pp.198–205. doi: 10.2337/diaclin.33.4.198.
- Pratami, D. et al., 2018. Phytochemical Profile and Antioxidant Activity of Propolis
 Ethanolic Extract from Tetragonula Bee. *Pharmacognosy Journal*, 10(1), pp.128–135.
 doi: 10.5530/pj.2018.1.23.
- Purwanti, E. et al., 2021. Exploring public health benefits of Dolichos lablab as a dietary
 supplement during the COVID-19 outbreak: A computational study. *Journal of Applied Pharmaceutical Science*, 11,(2), pp.135–140. doi:
 10.7324/JAPS.2021.110217.
- Purwanti, E. et al., 2022. Unfolding Biomechanism of Dolichos lablab Bean as A Dietary
 Supplement in Type 2 Diabetes Mellitus Management through Computational
 Simulation. *Research Journal of Pharmacy and Technology*, 15(7), pp.3233–3240.
 doi: 10.52711/0974-360X.2022.00542.
- Purwanti, E., Prihanta, W. & Fauzi, A., 2019a. Nutritional Content Characteristics of
 Dolichos lablab L. Accessions in Effort to Investigate Functional Food Source. In 6th

- International Conference on Community Development (ICCD 2019). Atlantis Press,
 pp. 166–170. doi: 10.2991/iccd-19.2019.45.
- Purwanti, E., Prihanta, W. & Fauzi, A., 2019b. The Diversity of Seed Size and Nutrient
 Content of Lablab Bean from Three Locations in Indonesia. *International Journal of Advanced Engineering, Management and Science*, 5(6), pp.395–402. doi:
 10.22161/ijaems.5.6.7.
- Robson, A.A., 2013. Chapter 25 Preventing the Epidemic of Non-Communicable Diseases:
 An Overview. In R. R. Watson & V. R. Preedy, eds. *Bioactive Food as Dietary Interventions for Liver and Gastrointestinal Disease*. San Diego: Academic Press, pp.
 383–400. doi: 10.1016/B978-0-12-397154-8.00016-6.
- Shahidi, F. & Ambigaipalan, P., 2015. Phenolics and polyphenolics in foods, beverages and
 spices: Antioxidant activity and health effects A review. *Journal of Functional Foods*, 18, pp.820–897. doi: 10.1016/j.jff.2015.06.018.
- Singh, B. et al., 2017. Phenolic composition and antioxidant potential of grain legume seeds:
 A review. *Food Research International*, 101, pp.1–16. doi:
 10.1016/j.foodres.2017.09.026.
- Singhania, P.R. & Senray, K., 2012. Glycemic response to amylopectin rich starch present in
 common fasting foods of India. *Nutrition & Food Science*, 42(3), pp.196–203. doi:
 10.1108/00346651211228496.
- Spiegel, M. et al., 2020. Antioxidant Activity of Selected Phenolic Acids-Ferric Reducing
 Antioxidant Power Assay and QSAR Analysis of the Structural Features. *Molecules (Basel, Switzerland)*, 25(13), p.3088. doi: 10.3390/molecules25133088.
- Thiex, N., 2009. Evaluation of Analytical Methods for the Determination of Moisture, Crude
 Protein, Crude Fat, and Crude Fiber in Distillers Dried Grains with Solubles. *Journal* of AOAC INTERNATIONAL, 92(1), pp.61–73. doi: 10.1093/jaoac/92.1.61.
- Zheng, C.-D. et al., 2010. DPPH-Scavenging Activities and Structure-Activity Relationships
 of Phenolic Compounds. *Natural Product Communications*, 5(11), pp.1759–1765.
 doi: 10.1177/1934578X1000501112.

301

7. Article accepted for publication (29-3-2023)

- Decision letter to authors

[JTBB] Editor Decision 2		Yahoo/Sent	☆
 Tanti Agustina <tantiagus5@gmail.com></tantiagus5@gmail.com> To: Elly Purwanti Cc: Feri Eko Hermanto, Wahyu Prihanta, Tutut Indria Permana, I Gusti Ngurah Agung Wiwekananda 	Ē	Wed, Mar 29 at 5:53 PM	☆
Dear Dr. Dra. Elly Purwanti, M.P.,			
Thank you for submitting your work, titled "Nutritional Contents and Bioactive Compounds among Several Variants of Dolichos lablab: Fundamental Facts for Functional Food Development", to Journal of Tropical Biodiversity and Biotechnology. After reviewing your submission, we decided to accept your manuscript for publication.			
Shortly after this, our copyeditor will contact you to review the final edited version of your manuscript. Please keep in mind that we will not publish the manuscript before you approve the final version.			
If you have any questions, please feel free to contact us.			
Sincerely yours, Tanti Agustina <u>tantiagus5@gmail.com</u>			
Journal of Tropical Biodiversity and Biotechnology http://jtbb.or.id ISSN 2540-9573 (print) ISSN 2540-9581 (online)			

8. Copyedited article sent to author (13-4-2023)

- Notification letter

 [JTBB] Copye 	diting Completed					Yahoo/Inbox	☆	
Salwa Sha To: Elly Pu	abria Wafi <wafisalwa@g rwanti</wafisalwa@g 	gmail.com>	I	- R	S Thu,	Apr 13 at 9:26 PM	☆	
Elly Purwanti:								
Compounds amon Functional Food	ng Several Variants of Do Development" for Journal review the proposed cha	"Nutritional Contents and Bioactive lichos lablab: Fundamental Facts for of Tropical Biodiversity and anges and respond to Author Queries,						
Forgot link if need 2. Click on the file copyedited versio	ded). ∋ at 1. Initial Copyedit File n.	th your username and password (use to download and open s using Track Changes in Word, and						
 Save file to des Click the email 	sktop and upload it in 2. A icon under COMPLETE	uthor Copyedit. and send email to the editor.						
will be asked at a		make substantial changes. You he galleys, but at that point can be corrected.						
Manuscript URL:	nttps://iurnal.ugm.ac.id/itt	b/author/submissionEditing/81339						
Username: ellypur								
If you are unable t please contact me		this time or have any questions,						
		r Agreement as well as invoice of						
the payment for th	e article. We would like t	o ask you to sign the Copyright e agreed on transferring the						
copyright of your r	nanuscript to JTBB upon	publication. After signing it, ument along with the payment proof						ł
of the invoice to m should be complet	y email. Please also note ted within seven days aft you that we will process	e that the payment of the invoice er receiving this email and we are your manuscript as soon as						0
Thank you very m journal.	uch for your cooperation	and your contribution to this						
Best Regards, Salwa Shabria Wa Admin of JTBB	ifi							
	I Biodiversity and Biotech	nology						
<u>http://jtbb.or.id</u> ISSN 2540-9573 (ISSN 2540-9581 (
🛃 Download all att	achments as a zip file							
	×							~
08-02-81339pdf 183.4kB	Copyright Trpdf 67.2kB							
		♠ ♠ ➡ …						

13. Edited article by author sent to editor (14-4-2023)

- Edited article with track changes

1	Nutritional Contents and Bioactive Compounds among Several Variants of Dolichos	Formatted: Do not check spelling or grammar
2	lablab: Fundamental Facts for Functional Food Development	
3		
4	Elly Purwanti ^{1,*} , Feri Eko Hermanto ^{2,3} , Wahyu Prihanta ¹ , Tutut Indria Permana ¹ , I Gusti	
5	Ngurah Agung Wiwekananda ⁴²	
6		
7	¹ Department of Educational Biology, Faculty of Teacher Training and Education, University	
8	of Muhammadiyah Malang, Malang 65144, East Java, Indonesia	
9	² Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas	
10	Brawijaya, Malang 65154, East Java, Indonesia [deleted 1 sentence] Faculty of Animal	Commented [A1]: Moved to affiliation no. 4
		Formatted: Font: Bold
11	Sciences, Universitas Brawijaya, Malang 65145, East Java, Indonesia	Formatted: Do not check spelling or grammar
12	³ Bioinformatics Research Center, Indonesian Institute of Bioinformatics (INBIO Indonesia),	
13	Malang 65162, East Java, Indonesia	
14	⁴ Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas	
15	Brawijaya, Malang 65145, East Java, Indonesia	
16	Bioinformatics Research Center, Indonesian Institute of Bioinformatics (INBIO Indonesia),	Formatted: Do not check spelling or grammar
17	Malang 65162, East Java, Indonesia	Commented [A2]: Moved to affiliation no. 3
18		Formatted: Do not check spelling or grammar
	*Corresponding author. Tel.: +6281336121486. Email address: purwantielly@ymail.com	
19	Corresponding aution. Tet., +0281330121480. Entail address. put wanten y@yman.com	
20		
21		
22		
23		
25		
24		

26			
27			
28			
29			
30			
31	Abstract		
32	To date, the data describing [deleted text] various nutritional and secondary metabolites		Formatted: English (United Kingdom), Do not check spelling
33	content of Lablab beans is incomplete. Therefore, this study [deleted text] evaluated the		or grammar Formatted: English (United Kingdom), Do not check spelling or grammar
34	nutritional value, secondary metabolites, and antioxidant activity of three different variants of		Formatted: English (United Kingdom), Do not check spelling or grammar
35	Lablab beans, i.e., brown, black, and cream beans. The results showed that the brown Lablab		Formatted: Font: Bold, English (United Kingdom), Do not check spelling or grammar
36	beans had outperformed other variants according to their nutritional value and flavonoid		Formatted: English (United Kingdom), Do not check spelling or grammar
37	content with outstanding DPPH scavenging activity. However, the black beans also showed		
38	good bioactive contents through their total phenolic percentage with decent reducing activity		
39	via the FRAP assay. Those who are keen in developing functional food from Lablab beans		
40	should consider this data as a reference.		
41	Keywords: Antioxidant, Dolichos lablab, functional food, nutritional value, secondary		Formatted: Do not check spelling or grammar
42	metabolites.		
43			
44	Legumes have provided nutritional value for years, contributing to the development of		
45	agriculture and food security (Considine et al. 2017), Not only are they a staple food in		Formatted: Do not check spelling or grammar
46	several regions of the globe, but legumes also provide valuable nutritional and health benefits		Formatted: Do not check spelling or grammar
40			
47	(Polak et al. 2015; Piergiovanni 2021), The consumption of legumes has been reported to	<	Formatted: Do not check spelling or grammar
48	have protective roles against modern society's health problems, such as diabetes mellitus,		Formatted: Do not check spelling or grammar
49	hyperlipidemia, and cardiovascular diseases (Polak et al. 2015; Hermanto et al. 2022a;		Formatted: Do not check spelling or grammar
			Formatted: Do not check spelling or grammar
50	Hermanto et al. 2022b), Furthermore, the bioactive compounds in legumes also provide	-	Formatted: Do not check spelling or grammar

numerous biological activities to achieve physiological homeostasis (Cakir et al. 2019), 51 Those facts are more than enough to describe the vital role of legumes in developing social 52 health status. There are many species of legumes worldwide, but not all beans are known in 53 the society. One of the underutilized legumes is Lablab beans (Dolichos lablab), also known 54 as Koro Komak in Indonesia (Purwanti et al. 2019b), Natively grown in the African continent 55 56 and Indian subcontinent, Lablab beans have become the primary source of energy due to their rich fibre [deleted text] and carbohydrate contents (Purwanti et al. 2019a; Maass et al. 2010). 57 58 Moreover, Lablab beans also have superior environmental adaptation due to their ability to 59 grow in drought areas (Missanga et al. 2021). Their innate nature may benefit the maintenance of food security, particularly in lands with low water supply. Thus, the 60 61 cultivation of Lablab beans provides a promising means in maintaining primary food stock in dry areas. 62

63 Three primary accessions or variants of Lablab beans have been identified in Indonesia (Purwanti et al. 2019b), Those accessions are commonly identified based on the beans' 64 colour, i.e., brown, black, and cream (figure 1). Although other variants may exist, these three 65 66 are commonly found in several regions in Indonesia, such as East Java (Probolinggo and Madura Island, and West Nusa Tenggara) (Purwanti et al. 2019b). The previous study 67 reported the bioactivity of bioactive compounds and nutritional values of Lablab beans 68 (Purwanti et al. 2021; Purwanti et al. 2022), Nevertheless, no report addresses the nutritional 69 70 differences among the variants of Lablab beans. Lablab beans have numerous bioactivities including antioxidant (Maheshu et al. 2013), antidiabetic (Purwanti et al. 2022), antivirus 71 (Purwanti et al. 2021), antimicrobial (Bai-Ngew et al. 2021), and anti-inflammatory 72 properties (An et al. 2020), These bioactivities make it a promising and excellent candidate 73 for functional food development. The details on the nutritional comparison among Lablab 74

Formatted: Do not check spelling or grammar Formatted: Do not check spelling or grammar

Formatted: Do not check spelling or grammar Formatted: Do not check spelling or grammar

 Formatted: Font: Bold, Do not check spelling or grammar

 Formatted: Do not check spelling or grammar

Formatted: Do not check spelling or grammar Formatted: Do not check spelling or grammar Formatted: Do not check spelling or grammar

Formatted: Do not check spelling or grammar Formatted: Do not check spelling or grammar

Formatted: Do not check spelling or grammar Formatted: Do not check spelling or grammar

 Formatted: Do not check spelling or grammar

 Formatted: Do not check spelling or grammar

 Formatted: Do not check spelling or grammar

 Formatted: Do not check spelling or grammar

 Formatted: Do not check spelling or grammar

 Formatted: Do not check spelling or grammar

 Formatted: Do not check spelling or grammar

 Formatted: Do not check spelling or grammar

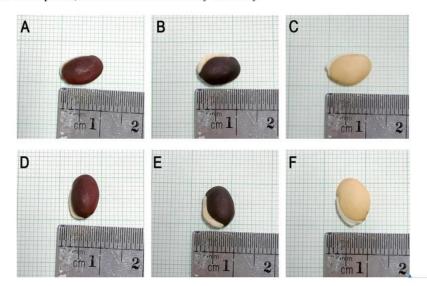
 Formatted: Do not check spelling or grammar

 Formatted: Do not check spelling or grammar

 Formatted: Do not check spelling or grammar

 Formatted: Do not check spelling or grammar

 Formatted: Do not check spelling or grammar


 Formatted: Do not check spelling or grammar

 Formatted: Do not check spelling or grammar

75 beans will provide a fundamental guideline for determining suitable variants for functional

food development, and it will be addressed by this study.

77

Formatted: Do not check spelling or grammar

Figure 1. The most popular Lablab beans variant found in Indonesia are brown (A, D), black
(B, E), and cream (C, F). The beans have been positioned to obtain the length (A-C) and the
width (D-F).

The sample of the beans for this study was obtained from Sumenep, Madura Island, 81 82 East Java, Indonesia during dry season in 2019. Details of the sample profiles and precise locations are as described in (Purwanti et al. 2019b), The beans were stored in 4°C until used. 83 84 The beans were processed as per the extraction method previously mentioned in (Purwanti et al. 2022). Briefly, grounded beans were soaked in 96% ethanol with 3:1 ratio (volume in L 85 and weight in kg) for 24 hours. The soaked beans powder then filtered to obtain the filtrate 86 and homogenate. The filtrate then rotary evaporated to separate solvent and solute followed 87 by freeze drying process to obtain Lablab beans' extract. The extract then processed to the 88 89 subsequent analysis.

Formatted: Do not check spelling or grammar Formatted: Do not check spelling or grammar

Formatted: Do not check spelling or grammar Formatted: Do not check spelling or grammar Formatted: Do not check spelling or grammar

Formatted: Do not check spelling or grammar

The crude **fibre** [deleted text], total protein, and crude fat content were determined according to the previous protocol (Thiex 2009), Amylose and amylopectin content were also measured colorimetrically using a previously described method (McGrance et al. 1998), On the other hand, IKA C2000 Calorimeter System (IKA Works, Germany) was employed to calculate the total calories as per manufacturer's protocol.

95 To determine the secondary metabolites content, total phenol and total flavonoid was employed. Total flavonoid was performed as per a previous protocol with minor 96 modifications (Pratami et al. 2018). Quercetin was used as the standard flavonoid compound. 97 The extract was dissolved in water, then 50 µL of the dissolved extract was mixed with 10 µL 98 of 5% NaNO₂, followed by the addition of 150 µL of water and 10 µL of 1 M CH₃COONa, 99 100 consecutively. The sample was then incubated at room temperature for 40 minutes. After 101 incubation, the sample was quantified using a spectrophotometer at 415 nm wavelength. The 102 total flavonoid concentration was described as percent (%) of Quercetin Equivalent (QE) according to the standard curve. 103

104 Total phenol was measured according to the previous study with minor modifications 105 (Hyun et al. 2014), with gallic acid as the standard. The sample was diluted in water, and 100 µL of the sample was added to 1 mL of Folin Ciocalteu reagent and incubated for 5 minutes 106 at room temperature with minimum light ambiance. 1 mL of 7.5% Na₂CO₃ was added to the 107 mixture, followed by incubation for 90 minutes in the same condition mentioned beforehand. 108 109 Upon incubation, the sample was then quantified spectrophotometrically at 725 nm. The total phenol was defined as [deleted text]% percentage of Gallic Acid Equivalent (GAE) as per the 110 111 build standard curve.

112 The antioxidant activity was measured by DPPH scavenging and Ferric Reducing 113 Antioxidant Potential (FRAP) assays. The method for DPPH scavenging and FRAP reducing 114 power was performed as described in (Irshad et al. 2012), All data were analysed by one-way

Formatted:	Font: Bold, Do not check spelling or grammar
Formatted:	Do not check spelling or grammar
Formatted:	Do not check spelling or grammar
Formatted:	Do not check spelling or grammar
Formatted:	Do not check spelling or grammar
Formatted:	Do not check spelling or grammar
Formatted:	Do not check spelling or grammar
Formatted:	Do not check spelling or grammar

Formatted: Do not check spelling or grammar Formatted: Do not check spelling or grammar

Formatted: Do not check spelling or grammar Formatted: Do not check spelling or grammar Formatted: English (United Kingdom), Do not check spelling or grammar

Commented [A3]: Isn't there any number of percentage?
Commented [A4R3]: the symbol is the unit of measurement for the experiment we're doing. The numbers resulting from these measurements are in table 2.
Formatted: English (United Kingdom), Do not check spelling or grammar
Formatted: English (United Kingdom), Do not check spelling or grammar
Formatted: Do not check spelling or grammar
Formatted: Do not check spelling or grammar
Formatted: Do not check spelling or grammar

115	ANOVA followed by Least Significant Difference (LSD) post-hoc analysis. The data was
116	determined as significantly different if the p-value is < 0.05 . The data was then visualised
117	[deleted text] as mean + standard deviation.
118	All Lablab bean variants have good nutritional content according to the caloric, total
119	fibre [deleted text], protein, crude fat, amylose, and amylopectin content. The fibre [deleted
120	text] content of black Lablab bean was the highest, with 8% fibre [deleted text] content,
121	followed by the cream and brown variants (table 1). The considerable content of dietary fibre
122	[deleted text] in Lablab beans displayed an immense potential to be developed as a functional
123	food. As commonly known, fibre [deleted text] consumption can improve physiological
124	homeostasis, particularly in relations to lipid and glucose metabolism (Jahan et al. 2020),
125	High fibre [deleted text] content is also suitable for dietary intervention to prevent obesity
126	(Dayib et al. 2020), With regards to total protein content, cream beans had the same protein
127	content as brown beans, while black beans had the lowest content of total proteins (table 1).
128	The high percentage of total protein content in Lablab beans would be valuable as a candidate
129	for functional foods since plant-based protein have broad health benefits, such as antioxidant,
130	antiviral, antidiabetic, and anticancer properties (Maphosa et al. 2017; Sipahli et al. 2021; Liu
131	et al. 2020; Roy et al. 2022; Purwanti et al. 2022), Nevertheless, specific treatment, such as
132	isoelectric preparation, was suggested to obtain a protein isolate with adequate quality and
133	good functional properties (Subagio 2006),
134	Cream beans have the highest percentage of crude fat among all variants (table 1). The
135	low-fat content of Lablab beans exhibit a great potential as functional food compared to other
136	beans since most legumes contain around 1,5% crude fat total (Etiosa et al. 2017), Low-lipid

food provides more health benefits with deleterious high-energy intake, particularly in areas

with high level of famine cases (Delaš 2011; Robson 2013), For instance, West Nusa

Tenggara province in Indonesia has the highest occurrence of hunger cases (Mone & Utami

137

138

139

1	Formatted: Font: Bold, Do not check spelling or grammar
1	Formatted: Do not check spelling or grammar
1	Formatted: Do not check spelling or grammar
1	Formatted: English (United Kingdom), Do not check spelling or grammar
1	Formatted: Font: Bold, English (United Kingdom), Do not check spelling or grammar
1	Formatted: English (United Kingdom), Do not check spelling or grammar
	Formatted: English (United Kingdom), Do not check spelling or grammar
$\langle $	Formatted: Font: Bold, English (United Kingdom), Do not check spelling or grammar
	Formatted: English (United Kingdom), Do not check spelling or grammar
$\langle \rangle$	Formatted: English (United Kingdom), Do not check spelling or grammar
	Formatted: Font: Bold, English (United Kingdom), Do not check spelling or grammar
	Formatted: English (United Kingdom), Do not check spelling or grammar
	Formatted: English (United Kingdom), Do not check spelling or grammar
	Formatted: Font: Bold, English (United Kingdom), Do not check spelling or grammar
	Formatted: English (United Kingdom), Do not check spelling or grammar
	Formatted: English (United Kingdom), Do not check spelling or grammar
	Formatted: Font: Bold
	Formatted: English (United Kingdom), Do not check spelling or grammar
	Formatted: English (United Kingdom), Do not check spelling or grammar
	Formatted: English (United Kingdom), Do not check spelling or grammar
	Formatted: Font: Bold
	Formatted: English (United Kingdom), Do not check spelling or grammar
	Formatted: English (United Kingdom), Do not check spelling or grammar
	Formatted: English (United Kingdom), Do not check spelling or grammar
	Formatted: English (United Kingdom), Do not check spelling or grammar
	Formatted: English (United Kingdom), Do not check spelling or grammar
	Formatted
	Formatted
Y	Formatted
1	Formatted
Y	Formatted
1	

...

Formatted

Formatted

2021), Interestingly, this region also founds a large distribution of Lablab beans (Jayanti et al.
2011), The utilization of Lablab beans to reduce the incidence of famine should be
considered. Thus, the low-fat content of Lablab beans displayed their potential as a functional
food candidate.

This study also measured the amount of amylose and amylopectin as part of its 144 145 functional properties and energy source. The black Lablab bean has the highest amylose content, with 15% amylose content, followed by brown and cream (table 1). In contrast, black 146 147 beans had the lowest amylopectin content -compared to the other analysed [deleted text] 148 variants (table 1). Similarly, black beans also had the lowest calorie per gram compared to other variants of Lablab beans (table 1). A food source with high amylopectin induces a 149 150 better glycemic response, especially during fasting (Singhania & Senray 2012). This starch also provides higher energy intake than low amylopectin sources (Singhania & Senray 2012). 151 152 Moreover, the increasing ratio of amylopectin/amylose reflects better nutrient digestibility (Gao et al. 2020). A diet containing large portion of amylopectin positively associated with 153 154 the postprandial insulin response resulted in more efficient nutrient uptake and glucose 155 metabolism (Gao et al. 2020), Therefore, brown and cream beans may become potential candidates as functional food. 156

This study demonstrated that Lablab beans have been found to have comparable levels of total protein with *Vigna radiata* and *Pisum sativum*, and even higher levels than *Glycine max* and *Lens culinaris* (Singh et al. 2022). In addition, Lablab beans have a **favourable** nutritional profile with higher dietary **fibre** [deleted text] and lower fat content compared to *Phaseolus vulgaris*, *L. culinaris*, *P. sativum*, and Edamame (Mullins & Arjmandi 2021; Dhingra et al. 2012; Didinger & Thompson 2021). The amylose content in Lablab beans was higher than *Cicer arietinum* and *G. max* (Tayade et al. 2019). Moreover, the amylose and Formatted: English (United Kingdom), Do not check spelling or grammar Formatted: English (United Kingdom), Do not check spelling or grammar Formatted: English (United Kingdom), Do not check spelling

or grammar

Formatted: Font: Bold
Formatted: English (United Kingdom), Do not check spelling
or grammar

Formatted: English (United Kingdom), Do not check spelling or grammar
Formatted: English (United Kingdom), Do not check spelling or grammar
Formatted: English (United Kingdom), Do not check spelling or grammar
Formatted: English (United Kingdom), Do not check spelling or grammar
Formatted: English (United Kingdom), Do not check spelling or grammar
Formatted: English (United Kingdom), Do not check spelling or grammar
Formatted: English (United Kingdom), Do not check spelling or grammar
Formatted: English (United Kingdom), Do not check spelling or grammar
Formatted: Do not check spelling or grammar

Formatted: Do not check spelling or grammar
Formatted: Do not check spelling or grammar
Formatted: Font: Bold, Do not check spelling or grammar
Formatted: Font: Bold
Formatted: Do not check spelling or grammar
Formatted: Do not check spelling or grammar
Commented [A5]: arrange chronologically
Formatted: Do not check spelling or grammar
Formatted: Do not check spelling or grammar
Formatted: Do not check spelling or grammar

amylopectin content in Lablab beans also similar with V. angularis, a "red pearls" that has

good nutrients and hypoglycemic activity (Zhang et al. 2022),

165
166

167

168

Table 1. The comparison of primary metabolites and nutritional content among Lablab bean variants.

Amylopectin Calorie **Crude Fat** Amylose Fiber (%) Protein (%) Variant (%) (%) (%) (kcal/g) Brown 7.02 24.91 0.36 14.41 87.18 3.86 $\pm 0.015a$ $\pm 0.06a$ $\pm 0.01a$ ± 0.095a $\pm 0.030a$ $\pm 0.005a$ Black 8.16 23.43 0.45 15.46 85.79 3.83 $\pm 0.040b$ $\pm 0.23b$ $\pm 0.03b$ $\pm 0.515b$ $\pm 0.015b$ $\pm 0.002b$ Cream 8.11 24.82 0.55 13.52 87.90 3.85 $\pm 0.005c$ $\pm 0.15a$ $\pm 0.04c$ $\pm 0.120c$ $\pm 0.025c$ $\pm 0.002a$

Formatted: Do not check spelling or grammar Formatted: Do not check spelling or grammar Formatted: English (United Kingdom), Do not check spelling or grammar Formatted: Do not check spelling or grammar

Formatted: Font: Bold, Do not check spelling or grammar Formatted: Do not check spelling or grammar

171 Note: The data was presented as mean <u>+</u> standard deviations (n = 3). Different alphabetical
172 notation indicates significant difference with *p* < 0.05 based on LSD test.
173 The total phenolic and flavonoid contents evaluation demonstrated that brown beans

exhibited the greatest content of flavonoid (p < 0.01), while the cream beans had the most negligible flavonoid content (table 2). **On** [deleted text] the other hand, the phenolic content was highest in black beans compared to other Lablab variants (p < 0.05, table 2). This result showed that Lablab beans have many phenolic compounds, with the flavonoid group being the most abundant in brown beans. In other words, the other variants may comprise of other phenolic compounds like phenolic acids, tannins, and other phenolic compounds (Purwanti et al. 2022), The current result **was** also higher than several edible beans, such as *P. vulgaris*, *P.*

181 *lunatus, V. radiata* and *C. arietinum* (Zhao et al. 2014), Nonetheless, the total flavonoid

Formatted: Font: Bold

Formatted: Do not check spelling or grammar

Formatted: Do not check spelling or grammar

Formatted: Do not check spelling or grammar Formatted: Font: Bold Formatted: Do not check spelling or grammar Formatted: Do not check spelling or grammar Formatted: Do not check spelling or grammar contents of Lablab beans were lower compared to *P. sativum*, *C. arietinum*, *V. radiata*, *P. vulgaris*, *P. lunatus*, *L. culinaris*, *Vicia faba*, and *G. max* (Sharma & Giri 2022), Although flavonoids are the most abundant phenolic compounds with various biological activities (Kumar & Pandey 2013), other phenolic compounds, either simple phenols or polyphenols other than flavonoids, have also been reported to have bioactivities to improve physiological homeostasis, mainly through their antioxidant activity (Shahidi & Ambigaipalan 2015; Singh et al. 2017),

The high flavonoid content was positively correlated with antioxidant activity through 189 190 DPPH scavenging activity, where brown beans had the highest scavenging activity compared to the others (table 2). However, the ferric reducing activity was stronger in variant with 191 192 higher phenolic contents (table 2). These results were supported by a structure-activity relationship between radical scavenging from different phenolic compounds and the radical 193 194 scavenging mechanism in DPPH and FRAP assay. Flavonoids have an ortho-dihydroxyl structure that plays a role in radical scavenging during DPPH assay by forming an 195 intramolecular hydrogen bond and more stable ortho-hydroxyl phenoxyl radical during the 196 197 oxidation process of radical scavenging (Zheng et al. 2010). Alternatively, other phenolic compounds, such as phenolic acids, have ortho or para position of the hydroxyl group in its 198 benzene ring (Spiegel et al. 2020). Those structural differences influence the radical 199 scavenging mechanism of flavonoids and other phenolic compounds in different antioxidant 200 assay. Hydrogen Atom Transfer (HAT), Single-Electron Transfer followed by Proton 201 202 Transfer (SET-PT), and Sequential Proton-Loss Electron Transfer (SPLET) are taking place 203 during the DPPH assay. Contrary, SPLET is the main mechanism during the electron transfer enthalpy in the FRAP reaction system (Chen et al. 2020), Ferulic Acid, Hydroxycinnamic 204 Acid, Sinapinic Acid, Coumaric Acid, and Isovanillic Acid are identified phenolic acids in 205 Lablab beans. Also, Rutin and Isoquercetin are flavonoids that also found in Lablab beans 206

Formatted: Do not check spelling or grammar Formatted: Do not check spelling or grammar

Formatted: Do not check spelling or grammar Formatted: Do not check spelling or grammar

Formatted: Do not check spelling or grammar

Formatted: Do not check spelling or grammar

Formatted: Do not check spelling or grammar Formatted: Do not check spelling or grammar

Formatted: Do not check spelling or grammar Formatted: Do not check spelling or grammar

Formatted: Do not check spelling or grammar Formatted: Do not check spelling or grammar 207 (Purwanti et al. 2022). Those compounds were identified in adequate abundance in Lablab 208 beans and may perform as radical scavenger during this study. Nevertheless, future studies are required to compare the secondary metabolites among different variant of Lablab beans to 209 210 [deleted text] comprehend the phytochemical content differences better. Despite the different 211 mechanisms and types of bioactive compounds in performing the antioxidant activity, it has 212 been displayed that brown and black beans exhibit solid antioxidant properties.

213 This study shows that all Lablab bean variants have good amount of nutritional value, 214 total phenol and flavonoid contents, and antioxidant activity. Lablab beans have adequate 215 nutritional values surpassed other types of edible beans. Despite having lower flavonoid contents compared to commonly consumed beans, the phenolic compounds in these beans 216 217 still exhibit superior performance. Finally, the cream variant shows slightly lower nutritional 218 contents and bioactive compound compared to the other analysed [deleted text]. Lablab 219 beans. Still, some varieties possess a promising characteristic as a functional food candidate owing to their nutritional value. 220

- 221
- 222

Table 2. The total flavonoid, phenolic, and antioxidant capacity according to the DPPH 223 scavenging capacity and FRAP analysis. 224

Formatted: Do not check spelling or grammar Formatted: Do not check spelling or grammar

Formatted: Do not check spelling or grammar Formatted: Font: Bold Formatted: Do not check spelling or grammar

Formatted: Font: Bold Formatted: Do not check spelling or grammar

Formatted: Do not check spelling or grammar

Formatted: Font: Bold Formatted: Do not check spelling or grammar

Formatted: Font: Bold, Do not check spelling or grammar Formatted: Do not check spelling or grammar

Variant	Total	Total Phenol	DPPH	FRAP	Formatted: English (United Kingdom), Do not check spelling or grammar
	Flavonoid (%)	(%)	Scavenging (%)	(µM FeSO4/mg)	
Brown	$26.25\pm0.34a$	$40.56 \pm 0.69a$	78.87 ± 1.59a	$1154.58 \pm 4.17a$	
Black	$12.99\pm0.31b$	$45.28\pm2.56b$	$40.01\pm0.16b$	$2398.05\pm4.81b$	
Cream	$12.15\pm0.06c$	$40.32 \pm 3.06a$	$24.53 \pm 0.16c$	$1061.53 \pm 2.41c$	
Cream				$1061.53 \pm 2.41c$ Different alphabetical	Formatted: Do not check spelling or grammar

225 Notes: The data was presented in mean \pm standard deviations (n = 3). Different alphabetical

226 notation indicates significant difference with p < 0.05 based on LSD test.

227		
228	Author contribution	
229	EP designed the research and acquired the project funding, FE collected and analysed	Formatted: Font: Bold
230	[deleted text] the data, WP and TIP wrote the manuscript, and IGNAW performed critical	Formatted: Do not check spelling or grammar
231	review and revision.	
232		
233	Acknowledgments	
234	The authors thank the Directorate of Research and Community Service (DPPM),	
235	University of Muhammadiyah Malang under PKID research grant scheme in 2022 (Grant No.	
236	E.2.a/334/BAA-UMM/IV/2022) for funding this work.	
237		
238	Conflict of Interest	
239	There is no conflict of interest raised in this study.	
240	References	
241 242 243	An, J.M. et al., 2020. Dolichos lablab L. extracts as pharmanutrient for stress-related mucosal disease in rat stomach. <i>Journal of Clinical Biochemistry and Nutrition</i> , 67(1), pp.89–101. doi: 10.3164/jcbn.20-11.	Formatted: Do not check spelling or grammar
244 245 246	Bai-Ngew, S. et al., 2021. Antimicrobial activity of a crude peptide extract from lablab bean (Dolichos lablab) for semi-dried rice noodles shelf-life. <i>Quality Assurance and Safety</i> of Crops & Foods, 13(2), pp.25–33. doi: 10.15586/qas.v13i2.882.	
247 248 249	Çakir, Ö. et al., 2019. Nutritional and health benefits of legumes and their distinctive genomic properties. <i>Food Science and Technology</i> , 39, pp.1–12. doi: 10.1590/fst.42117.	
250 251 252	Chen, J. et al., 2020. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. <i>Scientific Reports</i> , 10(1), p.2611. doi: 10.1038/s41598-020-59451-z.	
253 254 255	Considine, M.J., Siddique, K.H.M. & Foyer, C.H., 2017. Nature's pulse power: legumes, food security and climate change. <i>Journal of Experimental Botany</i> , 68(8), pp.1815– 1818. doi: 10.1093/jxb/erx099.	
256 257 258	Dayib, M., Larson, J. & Slavin, J., 2020. Dietary fibers reduce obesity-related disorders: mechanisms of action. <i>Current Opinion in Clinical Nutrition & Metabolic Care</i> , 23(6), pp.445–450. doi: 10.1097/MCO.000000000000696.	

259 260	Delaš, I., 2011. Benefits and hazards of fat-free diets. <i>Trends in Food Science & Technology</i> , 22(10), pp.576–582. doi: 10.1016/j.tifs.2011.08.008.	
261 262	Dhingra, D. et al., 2012. Dietary fibre in foods: a review. <i>Journal of Food Science and Technology</i> , 49(3), p.255. doi: 10.1007/s13197-011-0365-5.	
263 264 265	Didinger, C. & Thompson, H.J., 2021. Defining Nutritional and Functional Niches of Legumes: A Call for Clarity to Distinguish a Future Role for Pulses in the Dietary Guidelines for Americans. <i>Nutrients</i> , 13(4), p.1100. doi: 10.3390/nu13041100.	
266 267 268	Etiosa, O.R., Chika, N.B. & Benedicta, A., 2017. Mineral and Proximate Composition of Soya Bean. Asian Journal of Physical and Chemical Sciences, pp.1–6. doi: 10.9734/AJOPACS/2017/38530.	
269 270 271	Gao, X. et al., 2020. Effects of Dietary Starch Structure on Growth Performance, Serum Glucose–Insulin Response, and Intestinal Health in Weaned Piglets. <i>Animals</i> , 10(3), p.543. doi: 10.3390/ani10030543.	
272 273 274	Hermanto, F.E. et al., 2022a. On The Hypolipidemic Activity of Elicited Soybeans: Evidences Based on Computational Analysis. <i>Indonesian Journal of Chemistry</i> , 22(6), pp.1626–1636. doi: 10.22146/ijc.75777.	
275 276 277	Hermanto, F.E. et al., 2022b. Understanding hypocholesterolemic activity of soy isoflavones: Completing the puzzle through computational simulations. <i>Journal of Biomolecular</i> <i>Structure and Dynamics</i> , in press, pp.1–7. doi: 10.1080/07391102.2022.2148752.	
278 279 280	Hyun, T.K., Kim, HC. & Kim, JS., 2014. Antioxidant and antidiabetic activity of Thymus quinquecostatus Celak. <i>Industrial Crops and Products</i> , 52, pp.611–616. doi: 10.1016/j.indcrop.2013.11.039.	
281 282 283	Irshad, M. et al., 2012. Comparative Analysis of the Antioxidant Activity of Cassia fistula Extracts. <i>International Journal of Medicinal Chemistry</i> , 2012, p-157125. doi: 10.1155/2012/157125.	
284 285 286	Jahan, K., Qadri, O.S. & Younis, K., 2020. Dietary Fiber as a Functional Food. In S. Ahmad & N. A. Al-Shabib, eds. <i>Functional Food Products and Sustainable Health</i> . Singapore: Springer, pp. 155–167. doi: 10.1007/978-981-15-4716-4_10.	
287 288 289 290	Jayanti, E.T., Kasiamdari, R.S. & Daryono, B.S., 2011. Morphological Variation and Phenetic Relationship of Hyacinth Bean (Lablab purpureus (L.) Sweet) in Lombok, West Nusa Tenggara. <i>Proceeding ICBB (The International Conference on Bioscience and Biotechnology)</i> , 1(1), pp.C9–C15.	
291 292	Kumar, S. & Pandey, A.K., 2013. Chemistry and biological activities of flavonoids: an overview. <i>TheScientificWorldJournal</i> , 2013, p.162750. doi: 10.1155/2013/162750.	
293 294 295	Liu, YM. et al., 2020. A Carbohydrate-Binding Protein from the Edible Lablab Beans Effectively Blocks the Infections of Influenza Viruses and SARS-CoV-2. <i>Cell</i> <i>Reports</i> , 32(6), p.108016. doi: 10.1016/j.celrep.2020.108016.	
200	Marry DL et al. 2010 Lablah marry A. Carry Leet for Africa 2 To in 1 DL (D) 1	

Maass, B.L. et al., 2010. Lablab purpureus—A Crop Lost for Africa? *Tropical Plant Biology*, 3(3), pp.123–135. doi: 10.1007/s12042-010-9046-1.

298 299 300 301	Maheshu, V., Priyadarsini, D.T. & Sasikumar, J.M., 2013. Effects of processing conditions on the stability of polyphenolic contents and antioxidant capacity of Dolichos lablab L. <i>Journal of Food Science and Technology</i> , 50(4), pp.731–738. doi: 10.1007/s13197- 011-0387-z.	
302 303	Maphosa, Y. et al., 2017. <i>The Role of Legumes in Human Nutrition</i> , IntechOpen. doi: 10.5772/intechopen.69127.	
304 305 306	McGrance, S.J., Cornell, H.J. & Rix, C.J., 1998. A Simple and Rapid Colorimetric Method for the Determination of Amylose in Starch Products. <i>Starch - Stärke</i> , 50(4), pp.158– 163. doi: 10.1002/(SICI)1521-379X(199804)50:4<158::AID-STAR158>3.0.CO;2-7.	
307 308 309 310	Missanga, J.S., Venkataramana, P.B. & Ndakidemi, P.A., 2021. Recent developments in Lablab purpureus genomics: A focus on drought stress tolerance and use of genomic resources to develop stress-resilient varieties. <i>Legume Science</i> , 3(3), p.e99. doi: 10.1002/leg3.99.	
311 312 313	Mone, D.M.V. & Utami, E.D., 2021. Determinan Kelaparan di Indonesia Tahun 2015-2019. Seminar Nasional Official Statistics, 2021(1), pp.547–556. doi: 10.34123/semnasoffstat.v2021i1.962.	
314 315 316	Mullins, A.P. & Arjmandi, B.H., 2021. Health Benefits of Plant-Based Nutrition: Focus on Beans in Cardiometabolic Diseases. <i>Nutrients</i> , 13(2), p.519. doi: 10.3390/nu13020519.	
317 318 319	Piergiovanni, A.R., 2021. Legumes: staple foods used in rituals and festive events of Apulia region (southern Italy). <i>Food, Culture & Society</i> , 24(4), pp.543–561. doi: 10.1080/15528014.2021.1884420.	
320 321 322	Polak, R., Phillips, E.M. & Campbell, A., 2015. Legumes: Health Benefits and Culinary Approaches to Increase Intake. <i>Clinical Diabetes : A Publication of the American Diabetes Association</i> , 33(4), pp.198–205. doi: 10.2337/diaclin.33.4.198.	
323 324 325	Pratami, D. et al., 2018. Phytochemical Profile and Antioxidant Activity of Propolis Ethanolic Extract from Tetragonula Bee. <i>Pharmacognosy Journal</i> , 10(1), pp.128–135. doi: 10.5530/pj.2018.1.23.	
326 327 328 329	Purwanti, E. et al., 2021. Exploring public health benefits of Dolichos lablab as a dietary supplement during the COVID-19 outbreak: A computational study. <i>Journal of Applied Pharmaceutical Science</i> , 11,(2), pp.135–140. doi: 10.7324/JAPS.2021.110217.	
330 331 332 333	Purwanti, E. et al., 2022. Unfolding Biomechanism of Dolichos lablab Bean as A Dietary Supplement in Type 2 Diabetes Mellitus Management through Computational Simulation. <i>Research Journal of Pharmacy and Technology</i> , 15(7), pp.3233–3240. doi: 10.52711/0974-360X.2022.00542.	
334 335 336 337	Purwanti, E., Prihanta, W. & Fauzi, A., 2019a. Nutritional Content Characteristics of Dolichos lablab L. Accessions in Effort to Investigate Functional Food Source. In 6th International Conference on Community Development (ICCD 2019). Atlantis Press, pp. 166–170. doi: 10.2991/iccd-19.2019.45.	

337

338 339 340 341	Purwanti, E., Prihanta, W. & Fauzi, A., 2019b. The Diversity of Seed Size and Nutrient Content of Lablab Bean from Three Locations in Indonesia. <i>International Journal of</i> <i>Advanced Engineering, Management and Science</i> , 5(6), pp.395–402. doi: 10.22161/ijaems.5.6.7.	
342 343 344 345	Purwanti, E. et al., 2021. Exploring public health benefits of Dolichos lablab as a dietary supplement during the COVID-19 outbreak: A computational study. <i>Journal of</i> <i>Applied Pharmaceutical Science</i> , 11,(2), pp.135–140. doi: 10.7324/JAPS.2021.110217.	
346 347 348 349	Purwanti, E. et al., 2022. Unfolding Biomechanism of Dolichos lablab Bean as A Dietary Supplement in Type 2 Diabetes Mellitus Management through Computational Simulation. <i>Research Journal of Pharmacy and Technology</i> , 15(7), pp.3233–3240. doi: 10.52711/0974-360X.2022.00542.	Formatted: Do not check spelling or grammar
350 351 352 353	Robson, A.A., 2013. Chapter 25 - Preventing the Epidemic of Non-Communicable Diseases: An Overview. In R. R. Watson & V. R. Preedy, eds. <i>Bioactive Food as Dietary</i> <i>Interventions for Liver and Gastrointestinal Disease</i> . San Diego: Academic Press, pp. 383–400. doi: 10.1016/B978-0-12-397154-8.00016-6.	
354 355 356	Roy, M. et al., 2022. Evaluation of quality parameters and antioxidant properties of protein concentrates and hydrolysates of hyacinth bean (Lablab purpureus). <i>Legume Science</i> , 4(2), p.e128. doi: 10.1002/leg3.128.	
357 358 359	Shahidi, F. & Ambigaipalan, P., 2015. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – A review. <i>Journal of Functional</i> <i>Foods</i> , 18, pp.820–897. doi: 10.1016/j.jff.2015.06.018.	
360 361 362 363	Sharma, K.R. & Giri, G., 2022. Quantification of Phenolic and Flavonoid Content, Antioxidant Activity, and Proximate Composition of Some Legume Seeds Grown in Nepal. <i>International Journal of Food Science</i> , 2022, p.e4629290. doi: 10.1155/2022/4629290.	
364 365 366	Singh, B. et al., 2017. Phenolic composition and antioxidant potential of grain legume seeds: A review. <i>Food Research International</i> , 101, pp.1–16. doi: 10.1016/j.foodres.2017.09.026.	
367 368	Singh, N. et al., 2022. Escalate protein plates from legumes for sustainable human nutrition. <i>Frontiers in Nutrition</i> , 9, p.977986. doi: 10.3389/fnut.2022.977986.	
369 370 371	Singhania, P.R. & Senray, K., 2012. Glycemic response to amylopectin rich starch present in common fasting foods of India. <i>Nutrition & Food Science</i> , 42(3), pp.196–203. doi: 10.1108/00346651211228496.	
372 373 374	Sipahli, S. et al., 2021. In vitro antioxidant and apoptotic activity of Lablab purpureus (L.) Sweet isolate and hydrolysates. <i>Food Science and Technology</i> , 42, p.e55220. doi: 10.1590/fst.55220.	
375 376 377	Spiegel, M. et al., 2020. Antioxidant Activity of Selected Phenolic Acids-Ferric Reducing Antioxidant Power Assay and QSAR Analysis of the Structural Features. <i>Molecules</i> (<i>Basel, Switzerland</i>), 25(13), p.3088. doi: 10.3390/molecules25133088.	

378	Subagio, A., 2006. Characterization of hyacinth bean (Lablab purpureus (L.) sweet) seeds
379	from Indonesia and their protein isolate. <i>Food Chemistry</i> , 95(1), pp.65–70. doi:
380	10.1016/j.foodchem.2004.12.042.
381	Tayade, R. et al., 2019. Insight Into the Prospects for the Improvement of Seed Starch in
382	Legume—A Review. Frontiers in Plant Science, 10, p.1213. doi:
383	10.3389/fpls.2019.01213.
384	Thiex, N., 2009. Evaluation of Analytical Methods for the Determination of Moisture, Crude
385	Protein, Crude Fat, and Crude Fiber in Distillers Dried Grains with Solubles. <i>Journal</i>
386	of AOAC INTERNATIONAL, 92(1), pp.61–73. doi: 10.1093/jaoac/92.1.61.
387	Zhang, L. et al., 2022. Analysis and Research on Starch Content and Its Processing, Structure
388	and Quality of 12 Adzuki Bean Varieties. <i>Foods</i> , 11(21), p.3381. doi:
389	10.3390/foods11213381.
390 391	Zhao, Y. et al., 2014. In vitro antioxidant activity of extracts from common legumes. <i>Food Chemistry</i> , 152, pp.462–466. doi: 10.1016/j.foodchem.2013.12.006.
392	Zheng, CD. et al., 2010. DPPH-Scavenging Activities and Structure-Activity Relationships
393	of Phenolic Compounds. <i>Natural Product Communications</i> , 5(11), pp.1759–1765.
394	doi: 10.1177/1934578X1000501112

Copyright transfer agreement -

Journal of Tropical Biodiversity and Biotechnology

Copyright Transfer Agreement

Manuscript title:

Nutritional Contents and Bioactive Compounds among Several Variants of Dolichos lablab: Fundamental Facts for Functional Food Development

Author(s):

1

Elly Purwanti, Feri Eko Hermanto, Wahyu Prihanta, Tutut Indria Permana, I Gusti Ngurah Agung Wiwekananda

The author(s) hereby agree to transfer the copyright of the entitled manuscript to the Journal of Tropical Biodiversity and Biotechnology upon publication. The copyright will be held by the journal under Creative Commons Attribution (CC-BY-SA).

JTBB requires the Corresponding Author(s) to sign a copyright transfer agreement on behalf of all the authors.

Date: 14 April Name: Elly Purwanti 2023

Signature: Mury

9. Draft layout sent to author (9-5-2023)

- Notification letter

[JTBB] Proofread Layout 3			Yahoo/Inbox	☆	
 Salwa Shabria Wafi <wafisalwa@gmail.com></wafisalwa@gmail.com> To: Elly Purwanti, Feri Eko Hermanto, Wahyu Prihanta, Tutut Indria Permana, I Gusti Ngurah Agung Wiwekananda 	ē	0	Tue, May 9 at 5:03 PM	☆	
Dear Author(s),					
We would like to inform you that we have finished the draft layout of your article entitled "Nutritional Contents and Bioactive Compounds among Several Variants of Dolichos lablab: Fundamental Facts for Functional Food Development". Please kindly check the draft thoroughly and let us know if there are any changes needed to be made.					~
Furthermore, considering we have been indexed by Scopus, all of your data that appear in the layout such as name and affiliation will appear on your Scopus ID. Therefore, we encourage you to recheck the spelling of authors' names and the affiliation, as well as the similarity of authors' names and affiliation in the layout. Please take note that we will not accept revision once it is published and appeared in Scopus database.					
Best regards,					
Salwa Shabria Wafi Admin of JTBB. Journal of Tropical Biodiversity and Biotechnology <u>http://jtbb.or.id</u> ISSN 2540-9573 (print) ISSN 2540-9581 (online)					
Shortcom 3 Jpdf 1002.6kB					
♠ ≪					

- Draft layout

Journal of Tropical Biodiversity and Biotechnology Volume 08, Issue 02 (2023): jtbb81339 DOI: 10.22146/jtbb.81339

Short Communication

Nutritional Contents and Bioactive Compounds among Several Variants of *Dolichos lablab*: Fundamental Facts for Functional Food Development

Elly Purwanti¹*, Feri Eko Hermanto^{2,3}, Wahyu Prihanta¹, Tutut Indria Permana¹, I Gusti Ngurah Agung Wiwekananda⁴

1)Department of Educational Biology, Faculty of Teacher Training and Education, University of Muhammadiyah Malang, Malang 65144, East Java, Indonesia

2)Faculty of Animal Sciences, Universitas Brawijaya, Malang 65145, East Java, Indonesia

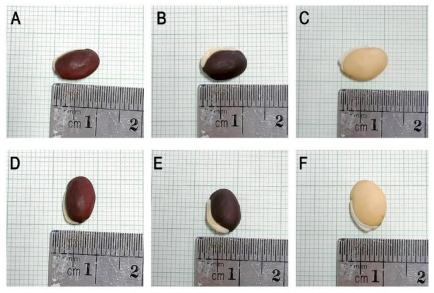
3)Bioinformatics Research Center, Indonesian Institute of Bioinformatics (INBIO Indonesia), Malang 65162, East Java, Indonesia

4) Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang 65145, East Java, Indonesia

* Corresponding author, email: purwantielly@ymail.com

Keywords:

Antioxidant Dolichos lablab functional food nutritional value secondary metabolites Submitted: 15 January 2023 Accepted: 29 March 2023 Published: xxxx Editor: Miftahul Ilmi


ABSTRACT

To date, the data describing various nutritional and secondary metabolites content of Lablab beans is incomplete. Therefore, this study evaluated the nutritional value, secondary metabolites, and antioxidant activity of three different variants of Lablab beans, i.e., brown, black, and cream beans. The results showed that the brown Lablab beans had outperformed other variants according to their nutritional value and flavonoid content with outstanding DPPH scavenging activity. However, the black beans also showed good bioactive contents through their total phenolic percentage with decent reducing activity via the FRAP assay. Those who are keen in developing functional food from Lablab beans should consider this data as a reference.

Copyright: © 2023, J. Tropical Biodiversity Biotechnology (CC BY-SA 4.0)

Legumes have provided nutritional value for years, contributing to the development of agriculture and food security (Considine et al. 2017). Not only are they a staple food in several regions of the globe, but legumes also provide valuable nutritional and health benefits (Polak et al. 2015; Piergiovanni 2021). The consumption of legumes has been reported to have protective roles against modern society's health problems, such as diabetes mellitus, hyperlipidemia, and cardiovascular diseases (Polak et al. 2015; Hermanto et al. 2022a; Hermanto et al. 2022b). Furthermore, the bioactive compounds in legumes also provide numerous biological activities to achieve physiological homeostasis (Çakir et al. 2019). Those facts are more than enough to describe the vital role of legumes in developing social health status. There are many species of legumes worldwide, but not all beans are known in the society. One of the underutilized legumes is Lablab beans (Dolichos lablab), also known as Koro Komak in Indonesia (Purwanti et al. 2019b). Natively grown in the African continent and Indian subcontinent, Lablab beans have become the primary source of energy due to their rich fibre and carbohydrate contents (Maass et al. 2010; Purwanti et al. 2019a). Moreover, Lablab beans also have superior environmental adaptation due to their ability to grow in drought areas (Missanga et al. 2021). Their innate nature may benefit the maintenance of food security, particularly in lands with low water supply. Thus, the cultivation of Lablab beans provides a promising means in maintaining primary food stock in dry areas.

Three primary accessions or variants of Lablab beans have been identified in Indonesia (Purwanti et al. 2019b). Those accessions are commonly identified based on the beans' colour, i.e., brown, black, and cream (figure 1). Although other variants may exist, these three are commonly found in several regions in Indonesia, such as East Java (Probolinggo and Madura Island) and West Nusa Tenggara (Purwanti et al. 2019b). The previous study reported the bioactivity of bioactive compounds and nutritional values of Lablab beans (Purwanti et al. 2021; Purwanti et al. 2022). Nevertheless, no report addresses the nutritional differences among the variants of Lablab beans. Lablab beans have numerous bioactivities including antioxidant (Maheshu et al. 2013), antidiabetic (Purwanti et al. 2022), antivirus (Purwanti et al. 2021), antimicrobial (Bai-Ngew et al. 2021), and anti-inflammatory properties (An et al. 2020). These bioactivities make it a promising and excellent candidate for functional food development. The details on the nutritional comparison among Lablab beans will provide a fundamental guideline for determining suitable variants for functional food development, and it will be addressed by this study.

Figure 1. The most popular Lablab beans variant found in Indonesia are brown (A, D), black (B, E), and cream (C, F). The beans have been positioned to obtain the length (A-C) and the width (D-F).

The sample of the beans for this study was obtained from Sumenep, Madura Island, East Java, Indonesia during dry season in 2019. Details of the sample profiles and precise locations are as described in the previous study (Purwanti et al. 2019b). The beans were stored in 4°C until used. The beans were processed as per the extraction method previously mentioned in (Purwanti et al. 2022). Briefly, grounded beans were soaked in 96% ethanol with 3:1 ratio (volume in L and weight in kg) for 24 hours. The soaked beans powder then filtered to obtain the filtrate and homogenate. The filtrate then rotary evaporated to separate solvent and solute followed by freeze drying process to obtain Lablab beans' extract. The extract then processed to the subsequent analysis.

The crude fibre, total protein, and crude fat content were determined according to the previous protocol (Thiex 2009). Amylose and amylopectin content were also measured colorimetrically using a previously described method (McGrance et al. 1998). On the other hand, IKA C2000 Calorimeter System (IKA Works, Germany) was employed to calculate the total calories as per manufacturer's protocol.

To determine the secondary metabolites content, total phenol and total flavonoid was employed. Total flavonoid was performed as per a previous protocol with minor modifications (Pratami et al. 2018). Querce-tin was used as the standard flavonoid compound. The extract was dissolved in water, then 50 μ L of the dissolved extract was mixed with 10 μ L of 5% NaNO₂, followed by the addition of 150 μ L of water and 10 μ L of 1 M CH₃COONa, consecutively. The sample was then incubated at room temperature for 40 minutes. After incubation, the sample was quantified using a spectrophotometer at 415 nm wavelength. The total flavonoid concentration was described as percent (%) of Quercetin Equivalent (QE) according to the standard curve.

Total phenol was measured according to the previous study with minor modifications (Hyun et al. 2014), with gallic acid as the standard. The sample was diluted in water, and 100 μ L of the sample was added to 1 mL of Folin Ciocalteu reagent and incubated for 5 minutes at room temperature with minimum light ambiance. 1 mL of 7.5% Na₂CO₃ was added to the mixture, followed by incubation for 90 minutes in the same condition mentioned beforehand. Upon incubation, the sample was then quantified spectrophotometrically at 725 nm. The total phenol was defined as percentage of Gallic Acid Equivalent (GAE) as per the build standard curve.

The antioxidant activity was measured by DPPH scavenging and Ferric Reducing Antioxidant Potential (FRAP) assays. The method for DPPH scavenging and FRAP reducing power was performed as described in the earlier work (Irshad et al. 2012). All data were analysed by one-way ANOVA followed by Least Significant Difference (LSD) posthoc analysis. The data was determined as significantly different if the pvalue is < 0.05. The data was then visualised as mean <u>+</u> standard deviation.

All Lablab bean variants have good nutritional content according to the caloric, total fibre, protein, crude fat, amylose, and amylopectin content. The fibre content of black Lablab bean was the highest, with 8% fibre content, followed by the cream and brown variants (table 1). The considerable content of dietary fibre in Lablab beans displayed an immense potential to be developed as a functional food. As commonly known, fibre consumption can improve physiological homeostasis, particularly in relations to lipid and glucose metabolism (Jahan et al. 2020). High fibre content is also suitable for dietary intervention to prevent obesity (Davib et al. 2020). With regards to total protein content, cream beans had the same protein content as brown beans, while black beans had the lowest content of total proteins (table 1). The high percentage of total protein content in Lablab beans would be valuable as a candidate for functional foods since plant-based protein have broad health benefits, such as antioxidant, antiviral, antidiabetic, and anticancer properties (Maphosa et al. 2017; Liu et al. 2020; Sipahli et al. 2021; Roy et al. 2022; Purwanti et al. 2022). Nevertheless, specific treatment, such as isoelectric preparation, was suggested to obtain a protein isolate with adequate quality and good functional properties (Subagio 2006).

Cream beans have the highest percentage of crude fat among all variants (table 1). The low-fat content of Lablab beans exhibit a great potential as functional food compared to other beans since most legumes contain around 1,5% crude fat total (Etiosa et al. 2017). Low-lipid food

provides more health benefits with deleterious high-energy intake, particularly in areas with high level of famine cases (Delaš 2011; Robson 2013). For instance, West Nusa Tenggara province in Indonesia has the highest occurrence of hunger cases (Mone & Utami 2021). Interestingly, this region also founds a large distribution of Lablab beans (Jayanti et al. 2011). The utilization of Lablab beans to reduce the incidence of famine should be considered. Thus, the low-fat content of Lablab beans displayed their potential as a functional food candidate.

This study also measured the amount of amylose and amylopectin as part of its functional properties and energy source. The black Lablab bean has the highest amylose content, with 15% amylose content, followed by brown and cream (table 1). In contrast, black beans had the lowest amylopectin content compared to the other analysed variants (table 1). Similarly, black beans also had the lowest calorie per gram compared to other variants of Lablab beans (table 1). A food source with high amylopectin induces a better glycemic response, especially during fasting (Singhania & Senray 2012). This starch also provides higher energy intake than low amylopectin sources (Singhania & Senray 2012). Moreover, the increasing ratio of amylopectin/amylose reflects better nutrient digestibility (Gao et al. 2020). A diet containing large portion of amylopectin positively associated with the postprandial insulin response resulted in more efficient nutrient uptake and glucose metabolism (Gao et al. 2020). Therefore, brown and cream beans may become potential candidates as functional food.

This study demonstrated that Lablab beans have been found to have comparable levels of total protein with *Vigna radiata* and *Pisum sativum*, and even higher levels than *Glycine max* and *Lens culinaris* (Singh et al. 2022). In addition, Lablab beans have a favourable nutritional profile with higher dietary fibre and lower fat content compared to *Phaseolus vulgaris*, *L. culinaris*, *P. sativum*, and Edamame (Dhingra et al. 2012; Mullins & Arjmandi 2021; Didinger & Thompson 2021). The amylose content in Lablab beans was higher than *Cicer arietinum* and *G. max* (Tayade et al. 2019). Moreover, the amylose and amylopectin content in Lablab beans also similar with *V. angularis*, a "red pearls" that has good nutrients and hypoglycemic activity (Zhang et al. 2022).

The total phenolic and flavonoid contents evaluation demonstrated that brown beans exhibited the greatest content of flavonoid (p < 0.01), while the cream beans had the most negligible flavonoid content (table 2). On the other hand, the phenolic content was highest in black beans compared to other Lablab variants (p < 0.05, table 2). This result showed that Lablab beans have many phenolic compounds, with the flavonoid group being the most abundant in brown beans. In other words, the other variants may comprise of other phenolic compounds like phenolic acids, tannins, and other phenolic compounds (Purwanti et al. 2022). The current result was also higher than several edible beans, such as *P. vul*garis, *P. lunatus, V. radiata* and *C. arietinum* (Zhao et al. 2014). Nonethe-

Table 1. The comparison of primary metabolites and nutritional content among Lablab bean variants.

Variant	Fiber (%)	Protein (%)	Crude Fat (%)	Amylose (%)	Amylopectin (%)	Calorie (kcal/g)
Brown	$7.02 \pm 0.015^{\mathrm{a}}$	$24.91\pm0.06^{\rm a}$	$0.36\pm0.01^{\mathrm{a}}$	$14.41\pm0.095^{\mathrm{a}}$	$87.18\pm0.030^{\mathrm{a}}$	$3.86\pm0.005^{\mathrm{a}}$
Black	$8.16\pm0.040^{\rm b}$	$23.43\pm0.23^{\rm b}$	$0.45\pm0.03^{\rm b}$	$15.46 \pm 0.515^{\mathrm{b}}$	$85.79 \pm 0.015^{\mathrm{b}}$	$3.83\pm0.002^{\rm b}$
Cream	$8.11\pm0.005^{\rm c}$	$24.82\pm0.15^{\rm a}$	$0.55\pm0.04^{\rm c}$	$13.52\pm0.120^{\rm c}$	$87.90 \pm 0.025^{\circ}$	$3.85\pm0.002^{\mathrm{a}}$

Note: The data was presented as mean <u>+</u> standard deviations (n = 3). Different alphabetical notation indicates significant difference with p < 0.05 based on LSD test.

less, the total flavonoid contents of Lablab beans were lower compared to *P. sativum, C. arietinum, V. radiata, P. vulgaris, P. lunatus, L. culinaris, Vicia faba*, and *G. max* (Sharma & Giri 2022). Although flavonoids are the most abundant phenolic compounds with various biological activities (Kumar & Pandey 2013), other phenolic compounds, either simple phenols or polyphenols other than flavonoids, have also been reported to have bioactivities to improve physiological homeostasis, mainly through their antioxidant activity (Shahidi & Ambigaipalan 2015; Singh et al. 2017).

The high flavonoid content was positively correlated with antioxidant activity through DPPH scavenging activity, where brown beans had the highest scavenging activity compared to the others (table 2). However, the ferric reducing activity was stronger in variant with higher phenolic contents (table 2). These results were supported by a structureactivity relationship between radical scavenging from different phenolic compounds and the radical scavenging mechanism in DPPH and FRAP assay. Flavonoids have an ortho-dihydroxyl structure that plays a role in radical scavenging during DPPH assay by forming an intramolecular hydrogen bond and more stable ortho-hydroxyl phenoxyl radical during the oxidation process of radical scavenging (Zheng et al. 2010). Alternatively, other phenolic compounds, such as phenolic acids, have ortho or para position of the hydroxyl group in its benzene ring (Spiegel et al. 2020). Those structural differences influence the radical scavenging mechanism of flavonoids and other phenolic compounds in different antioxidant assay. Hydrogen Atom Transfer (HAT), Single-Electron Transfer followed by Proton Transfer (SET-PT), and Sequential Proton-Loss Electron Transfer (SPLET) are taking place during the DPPH assay. Contrary, SPLET is the main mechanism during the electron transfer enthalpy in the FRAP reaction system (Chen et al. 2020). Ferulic Acid, Hydroxycinnamic Acid, Sinapinic Acid, Coumaric Acid, and Isovanillic Acid are identified phenolic acids in Lablab beans. Also, Rutin and Isoquercetin are flavonoids that also found in Lablab beans (Purwanti et al. 2022). Those compounds were identified in adequate abundance in Lablab beans and may perform as radical scavenger during this study. Nevertheless, future studies are required to compare the secondary metabolites among different variant of Lablab beans to comprehend the phytochemical content differences better. Despite the different mechanisms and types of bioactive compounds in performing the antioxidant activity, it has been displayed that brown and black beans exhibit solid antioxidant properties.

This study shows that all Lablab bean variants have good amount of nutritional value, total phenol and flavonoid contents, and antioxidant activity. Lablab beans have adequate nutritional values surpassed other types of edible beans. Despite having lower flavonoid contents compared to commonly consumed beans, the phenolic compounds in these beans still exhibit superior performance. Finally, the cream variant shows slightly lower nutritional contents and bioactive compound compared to

Table 2. The total flavonoid, phenolic, and antioxidant capacity according to the DPPH scavenging capacity and FRAP analysis.

Variant	Total Flavonoid	Total Phenol	DPPH Scavenging	FRAP
	(%)	(%)	(%)	(µM FeSO₄/mg)
Brown	$26.25\pm0.34^{\mathrm{a}}$	40.56 ± 0.69^{a}	78.87 ± 1.59^{a}	1154.58 ± 4.17^{a}
Black	$12.99\pm0.31^{\mathrm{b}}$	$45.28\pm2.56^{\rm b}$	40.01 ± 0.16^{b}	$2398.05 \pm 4.81^{\mathrm{b}}$
Cream	$12.15 \pm 0.06^{\circ}$	40.32 ± 3.06^{a}	$24.53 \pm 0.16^{\circ}$	$1061.53 \pm 2.41^{\circ}$

Notes: The data was presented in mean \pm standard deviations (n = 3). Different alphabetical notation indicates significant difference with p < 0.05 based on LSD test.

the other analysed Lablab beans. Still, some varieties possess a promising characteristic as a functional food candidate owing to their nutritional value.

AUTHORS CONTRIBUTION

EP designed the research and acquired the project funding, FE collected and analysed the data, WP and TIP wrote the manuscript, and IGNAW performed critical review and revision.

ACKNOWLEDGMENTS

The authors thank the Directorate of Research and Community Service (DPPM), University of Muhammadiyah Malang under PKID research grant scheme in 2022 (Grant No. E.2.a/334/BAA-UMM/IV/2022) for funding this work.

CONFLICT OF INTEREST

There is no conflict of interest raised in this study.

REFERENCES

- An, J.M. et al., 2020. Dolichos lablab L. extracts as pharmanutrient for stress-related mucosal disease in rat stomach. *Journal of Clinical Bi*ochemistry and Nutrition, 67(1), pp.89–101. doi: 10.3164/jcbn.20-11.
- Bai-Ngew, S. et al., 2021. Antimicrobial activity of a crude peptide extract from lablab bean (Dolichos lablab) for semi-dried rice noodles shelf-life. *Quality Assurance and Safety of Crops & Foods*, 13(2), pp.25– 33. doi: 10.15586/qas.v13i2.882.
- Çakir, Ö. et al., 2019. Nutritional and health benefits of legumes and their distinctive genomic properties. *Food Science and Technology*, 39, pp.1 -12. doi: 10.1590/fst.42117.
- Chen, J. et al., 2020. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. *Scientific Reports*, 10(1), 2611. doi: 10.1038/s41598-020-59451z.
- Considine, M.J., Siddique, K.H.M. & Foyer, C.H., 2017. Nature's pulse power: legumes, food security and climate change. *Journal of Experimental Botany*, 68(8), pp.1815–1818. doi: 10.1093/jxb/erx099.
- Dayib, M., Larson, J. & Slavin, J., 2020. Dietary fibers reduce obesityrelated disorders: mechanisms of action. *Current Opinion in Clinical Nutrition & Metabolic Care*, 23(6), pp.445–450. doi: 10.1097/ MCO.00000000000696.
- Delaš, I., 2011. Benefits and hazards of fat-free diets. Trends in Food Science & Technology, 22(10), pp.576–582. doi: 10.1016/ j.tifs.2011.08.008.
- Dhingra, D. et al., 2012. Dietary fibre in foods: a review. Journal of Food Science and Technology, 49(3), 255. doi: 10.1007/s13197-011-0365-5.
- Didinger, C. & Thompson, H.J., 2021. Defining Nutritional and Functional Niches of Legumes: A Call for Clarity to Distinguish a Future Role for Pulses in the Dietary Guidelines for Americans. Nutrients, 13(4), 1100. doi: 10.3390/nu13041100.

- Etiosa, O.R., Chika, N.B. & Benedicta, A., 2017. Mineral and Proximate Composition of Soya Bean. Asian Journal of Physical and Chemical Sciences, pp.1–6. doi: 10.9734/AJOPACS/2017/38530.
- Gao, X. et al., 2020. Effects of Dietary Starch Structure on Growth Performance, Serum Glucose–Insulin Response, and Intestinal Health in Weaned Piglets. *Animals*, 10(3), p.543. doi: 10.3390/ ani10030543.
- Hermanto, F.E. et al., 2022a. On The Hypolipidemic Activity of Elicited Soybeans: Evidences Based on Computational Analysis. *Indonesian Journal of Chemistry*, 22(6), pp.1626–1636. doi: 10.22146/ijc.75777.
- Hermanto, F.E. et al., 2022b. Understanding hypocholesterolemic activity of soy isoflavones: Completing the puzzle through computational simulations. *Journal of Biomolecular Structure and Dynamics*, in press, pp.1–7. doi: 10.1080/07391102.2022.2148752.
- Hyun, T.K., Kim, H.C. & Kim, J.S., 2014. Antioxidant and antidiabetic activity of Thymus quinquecostatus Celak. *Industrial Crops and Products*, 52, pp.611–616. doi: 10.1016/j.indcrop.2013.11.039.
- Irshad, M. et al., 2012. Comparative Analysis of the Antioxidant Activity of Cassia fistula Extracts. *International Journal of Medicinal Chemistry*, 2012, 157125. doi: 10.1155/2012/157125.
- Jahan, K., Qadri, O.S. & Younis, K., 2020. Dietary Fiber as a Functional Food. In *Functional Food Products and Sustainable Health*. Singapore: Springer, pp. 155–167. doi: 10.1007/978-981-15-4716-4_10.
- Jayanti, E.T., Kasiamdari, R.S. & Daryono, B.S., 2011. Morphological Variation and Phenetic Relationship of Hyacinth Bean (Lablab purpureus (L.) Sweet) in Lombok, West Nusa Tenggara. Proceeding ICBB (The International Conference on Bioscience and Biotechnology), 1 (1), pp.C9–C15.
- Kumar, S. & Pandey, A.K., 2013. Chemistry and biological activities of flavonoids: an overview. *TheScientificWorldJournal*, 2013, 162750. doi: 10.1155/2013/162750.
- Liu, Y.M. et al., 2020. A Carbohydrate-Binding Protein from the Edible Lablab Beans Effectively Blocks the Infections of Influenza Viruses and SARS-CoV-2. *Cell Reports*, 32(6), 108016. doi: 10.1016/ j.celrep.2020.108016.
- Maass, B.L. et al., 2010. Lablab purpureus—A Crop Lost for Africa? *Tropical Plant Biology*, 3(3), pp.123–135. doi: 10.1007/s12042-010-9046-1.
- Maheshu, V., Priyadarsini, D.T. & Sasikumar, J.M., 2013. Effects of processing conditions on the stability of polyphenolic contents and antioxidant capacity of Dolichos lablab L. *Journal of Food Science and Technology*, 50(4), pp.731–738. doi: 10.1007/s13197-011-0387-z.
- Maphosa, Y. et al., 2017. The Role of Legumes in Human Nutrition, IntechOpen. doi: 10.5772/intechopen.69127.
- McGrance, S.J., Cornell, H.J. & Rix, C.J., 1998. A Simple and Rapid Colorimetric Method for the Determination of Amylose in Starch Products. *Starch Stärke*, 50(4), pp.158–163. doi: 10.1002/(SICI) 1521-379X(199804)50:4<158::AID-STAR158>3.0.CO;2-7.

- Missanga, J.S., Venkataramana, P.B. & Ndakidemi, P.A., 2021. Recent developments in Lablab purpureus genomics: A focus on drought stress tolerance and use of genomic resources to develop stressresilient varieties. *Legume Science*, 3(3), p.e99. doi: 10.1002/leg3.99.
- Mone, D.M.V. & Utami, E.D., 2021. Determinan Kelaparan di Indonesia Tahun 2015-2019. Seminar Nasional Official Statistics, 2021(1), pp.547-556. doi: 10.34123/semnasoffstat.v2021i1.962.
- Mullins, A.P. & Arjmandi, B.H., 2021. Health Benefits of Plant-Based Nutrition: Focus on Beans in Cardiometabolic Diseases. *Nutrients*, 13(2), p.519. doi: 10.3390/nu13020519.
- Piergiovanni, A.R., 2021. Legumes: staple foods used in rituals and festive events of Apulia region (southern Italy). *Food, Culture & Society*, 24(4), pp.543–561. doi: 10.1080/15528014.2021.1884420.
- Polak, R., Phillips, E.M. & Campbell, A., 2015. Legumes: Health Benefits and Culinary Approaches to Increase Intake. *Clinical Diabetes: A Publication of the American Diabetes Association*, 33(4), pp.198–205. doi: 10.2337/diaclin.33.4.198.
- Pratami, D. et al., 2018. Phytochemical Profile and Antioxidant Activity of Propolis Ethanolic Extract from Tetragonula Bee. *Pharmacognosy Journal*, 10(1), pp.128–135. doi: 10.5530/pj.2018.1.23.
- Purwanti, E., Prihanta, W. & Fauzi, A., 2019a. Nutritional Content Characteristics of Dolichos lablab L. Accessions in Effort to Investigate Functional Food Source. *Atlantis Press*, pp. 166–170. doi: 10.2991/ iccd-19.2019.45.
- Purwanti, E., Prihanta, W. & Fauzi, A., 2019b. The Diversity of Seed Size and Nutrient Content of Lablab Bean from Three Locations in Indonesia. *International Journal of Advanced Engineering, Management* and Science, 5(6), pp.395–402. doi: 10.22161/ijaems.5.6.7.
- Purwanti, E. et al., 2021. Exploring public health benefits of Dolichos lablab as a dietary supplement during the COVID-19 outbreak: A computational study. *Journal of Applied Pharmaceutical Science*, 11, (2), pp.135–140. doi: 10.7324/JAPS.2021.110217.
- Purwanti, E. et al., 2022. Unfolding Biomechanism of Dolichos lablab Bean as A Dietary Supplement in Type 2 Diabetes Mellitus Management through Computational Simulation. *Research Journal of Pharmacy and Technology*, 15(7), pp.3233–3240. doi: 10.52711/0974-360X.2022.00542.
- Robson, A.A., 2013. Chapter 25 Preventing the Epidemic of Non-Communicable Diseases: An Overview. In R. R. Watson & V. R. Preedy, eds. *Bioactive Food as Dietary Interventions for Liver and Gastrointestinal Disease*. San Diego: Academic Press, pp. 383–400. doi: 10.1016/B978-0-12-397154-8.00016-6.
- Roy, M. et al., 2022. Evaluation of quality parameters and antioxidant properties of protein concentrates and hydrolysates of hyacinth bean (Lablab purpureus). *Legume Science*, 4(2), p.e128. doi: 10.1002/leg3.128.

- Shahidi, F. & Ambigaipalan, P., 2015. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects
 A review. *Journal of Functional Foods*, 18, pp.820–897. doi: 10.1016/j.jff.2015.06.018.
- Sharma, K.R. & Giri, G., 2022. Quantification of Phenolic and Flavonoid Content, Antioxidant Activity, and Proximate Composition of Some Legume Seeds Grown in Nepal. *International Journal of Food Science*, 2022, e4629290. doi: 10.1155/2022/4629290.
- Singh, B. et al., 2017. Phenolic composition and antioxidant potential of grain legume seeds: A review. *Food Research International*, 101, pp.1 -16. doi: 10.1016/j.foodres.2017.09.026.
- Singh, N. et al., 2022. Escalate protein plates from legumes for sustainable human nutrition. *Frontiers in Nutrition*, 9, 977986. doi: 10.3389/fnut.2022.977986.
- Singhania, P.R. & Senray, K., 2012. Glycemic response to amylopectin rich starch present in common fasting foods of India. *Nutrition & Food Science*, 42(3), pp.196–203. doi: 10.1108/00346651211228496.
- Sipahli, S. et al., 2021. In vitro antioxidant and apoptotic activity of Lablab purpureus (L.) Sweet isolate and hydrolysates. *Food Science and Technology*, 42, e55220. doi: 10.1590/fst.55220.
- Spiegel, M. et al., 2020. Antioxidant Activity of Selected Phenolic Acids-Ferric Reducing Antioxidant Power Assay and QSAR Analysis of the Structural Features. *Molecules (Basel, Switzerland)*, 25(13), 3088. doi: 10.3390/molecules25133088.
- Subagio, A., 2006. Characterization of hyacinth bean (Lablab purpureus (L.) sweet) seeds from Indonesia and their protein isolate. *Food Chemistry*, 95(1), pp.65–70. doi: 10.1016/j.foodchem.2004.12.042.
- Tayade, R. et al., 2019. Insight Into the Prospects for the Improvement of Seed Starch in Legume—A Review. *Frontiers in Plant Science*, 10, 1213. doi: 10.3389/fpls.2019.01213.
- Thiex, N., 2009. Evaluation of Analytical Methods for the Determination of Moisture, Crude Protein, Crude Fat, and Crude Fiber in Distillers Dried Grains with Solubles. *Journal of AOAC INTERNATION-AL*, 92(1), pp.61–73. doi: 10.1093/jaoac/92.1.61.
- Zhang, L. et al., 2022. Analysis and Research on Starch Content and Its Processing, Structure and Quality of 12 Adzuki Bean Varieties. *Foods*, 11(21), p.3381. doi: 10.3390/foods11213381.
- Zhao, Y. et al., 2014. In vitro antioxidant activity of extracts from common legumes. *Food Chemistry*, 152, pp.462–466. doi: 10.1016/ j.foodchem.2013.12.006.
- Zheng, C.D. et al., 2010. DPPH-Scavenging Activities and Structure-Activity Relationships of Phenolic Compounds. *Natural Product Communications*, 5(11), pp.1759-1765. doi: 10.1177/1934578X1000501112.

10. Draft layout revision sent to editor (10-5-2023)

- Email response to editor

← Back ◀	•	•		Archive	↑ Move	🔟 Delete	Spam •••			÷	• •	×
	lly Purwar o: Salwa Sh		elly@ymail.con	n>					👌 Wed, May	/ 10 at 1	10:43 AM	☆
Dear the	Editor of <mark>J</mark>	TBB,										
Thank yo	ou for the u	pdate. After th	oroughly cheo	cked the draft, here	are our revisio	ons:						
Nusa Te [page 2, [page 3, [page 4, [page 5, into unita	nggara) 3rd paragra 4th paragra table 1] - R 2nd paragr Ilicized)	aph, line 3] - A aph, line 4] - A EFORMAT - a aph, line 8] - I	ADD by as d ADD by as d alphabetical no REFORMAT -	lescribed in the pre lescribed in the ear otation in each row Flavonoids have a	vious study (Pr lier work (Irsha describing the n ortho-dihydro	urwanti et al. 20 d et al. 2012), fi value of the dat xyl , from Fla	a Tenggara, from (P 19b), from as de rom ADD by as de a should be supers vonoids have <i>an or</i> a should be supers	scribed in (Pur described in (Ins scripted tho-dihydroxyl	wanti et al. 20 shad et al. 201)19b) 12)		
The part Thank ye		a revision as h	ighlighted in y	vellow in the attach	ed file. Please	kindly inform us	if there is somethir	ng unclear.				(>
Sincerel Dr. Elly F												
> Show	v original me	ssage										
	۶											
Shortcom 990.3kB	3 Jpdf											

11. Article published (3-7-2023)

- Question for publication schedule

Question for Publication Schedule 3 Yahoo/Sent 🛣					
Elly Purwanti <purwantielly@ymail.com> To: Miftahul Ilmi, Salwa Wafi</purwantielly@ymail.com>	ē	Thu, Jun 8 at 4:53 PM	☆		
Dear the editors of JTBB,					
Regarding the acceptance of our manuscript entitled "Nutritional Contents and Bioactive Compounds among Se lablab: Fundamental Facts for Functional Food Development" in your journal, we would like to ask for the public manuscript. If possible, please kindly send us the link for the online first version if our manuscript not have been volume. Thank you in advance.	ation	schedule of our		>	
Sincerely, Dr. Elly Purwanti					
♠ ≪					

- Publication schedule confirmed

 Salwa Wafi <wafisalwa@gmail.com> To: Elly Purwanti Cc: Miftahul Ilmi

Dear Ms. Purwanti,

Thank you for your email. Your manuscript has been scheduled to be published on 3rd July 2023 in Volume 8 Issue 2. As it has not been published yet, there is no online version available. Please kindly wait until it is published, and we can give the link of the online version afterwards. I hope it answers your question. Thank you for your understanding.

🖶 🛛 Fri, Jun 9 at 9:43 AM 🟠

Best regards, Salwa Shabria Wafi Admin of JTBB.

Journal of Tropical Biodiversity and Biotechnology http://jtbb.or.id ISSN 2540-9573 (print) ISSN 2540-9581 (online)

> Show original message

Final paper for publication

Journal of Tropical Biodiversity and Biotechnology Volume 08, Issue 02 (2023): jtbb81339 DOI: 10.22146/jtbb.81339

Short Communications

Nutritional Contents and Bioactive Compounds among Several Variants of *Dolichos lablab*: Fundamental Facts for Functional Food Development

Elly Purwanti¹*, Feri Eko Hermanto^{2,3}, Wahyu Prihanta¹, Tutut Indria Permana¹, I Gusti Ngurah Agung Wiwekananda⁴

1)Department of Educational Biology, Faculty of Teacher Training and Education, University of Muhammadiyah Malang, Malang 65144, East Java, Indonesia

2)Faculty of Animal Sciences, Universitas Brawijaya, Malang 65145, East Java, Indonesia

3)Bioinformatics Research Center, Indonesian Institute of Bioinformatics (INBIO Indonesia), Malang 65162, East Java, Indonesia

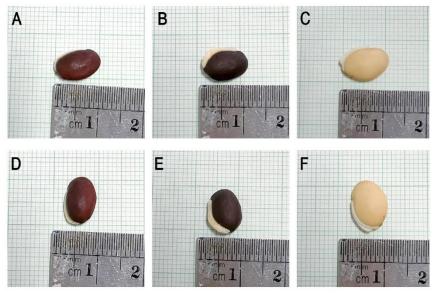
4) Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang 65145, East Java, Indonesia

* Corresponding author, email: purwantielly@ymail.com

Keywords:

Antioxidant Dolichos lablab functional food nutritional value secondary metabolites Submitted: 15 January 2023 Accepted: 29 March 2023 Published: 03 July 2023 Editor: Miftahul Ilmi

ABSTRACT


To date, the data describing various nutritional and secondary metabolites content of Lablab beans is incomplete. Therefore, this study evaluated the nutritional value, secondary metabolites, and antioxidant activity of three different variants of Lablab beans, i.e., brown, black, and cream beans. The results showed that the brown Lablab beans had outperformed other variants according to their nutritional value and flavonoid content with outstanding DPPH scavenging activity. However, the black beans also showed good bioactive contents through their total phenolic percentage with decent reducing activity via the FRAP assay. Those who are keen in developing functional food from Lablab beans should consider this data as a reference.

Copyright: © 2023, J. Tropical Biodiversity Biotechnology (CC BY-SA 4.0)

Legumes have provided nutritional value for years, contributing to the development of agriculture and food security (Considine et al. 2017). Not only are they a staple food in several regions of the globe, but legumes also provide valuable nutritional and health benefits (Polak et al. 2015; Piergiovanni 2021). The consumption of legumes has been reported to have protective roles against modern society's health problems, such as diabetes mellitus, hyperlipidemia, and cardiovascular diseases (Polak et al. 2015; Hermanto et al. 2022a; Hermanto et al. 2022b). Furthermore, the bioactive compounds in legumes also provide numerous biological activities to achieve physiological homeostasis (Çakir et al. 2019). Those facts are more than enough to describe the vital role of legumes in developing social health status. There are many species of legumes worldwide, but not all beans are known in the society. One of the underutilized legumes is Lablab beans (Dolichos lablab), also known as Koro Komak in Indonesia (Purwanti et al. 2019b). Natively grown in the African continent and Indian subcontinent, Lablab beans have become the primary source of energy due to their rich fibre and carbohydrate contents (Maass et al. 2010; Purwanti et al. 2019a). Moreover, Lablab beans also have superior

environmental adaptation due to their ability to grow in drought areas (Missanga et al. 2021). Their innate nature may benefit the maintenance of food security, particularly in lands with low water supply. Thus, the cultivation of Lablab beans provides a promising means in maintaining primary food stock in dry areas.

Three primary accessions or variants of Lablab beans have been identified in Indonesia (Purwanti et al. 2019b). Those accessions are commonly identified based on the beans' colour, i.e., brown, black, and cream (figure 1). Although other variants may exist, these three are commonly found in several regions in Indonesia, such as East Java (Probolinggo and Madura Island) and West Nusa Tenggara (Purwanti et al. 2019b). The previous study reported the bioactivity of bioactive compounds and nutritional values of Lablab beans (Purwanti et al. 2021; Purwanti et al. 2022). Nevertheless, no report addresses the nutritional differences among the variants of Lablab beans. Lablab beans have numerous bioactivities including antioxidant (Maheshu et al. 2013), antidiabetic (Purwanti et al. 2022), antivirus (Purwanti et al. 2021), antimicrobial (Bai-Ngew et al. 2021), and anti-inflammatory properties (An et al. 2020). These bioactivities make it a promising and excellent candidate for functional food development. The details on the nutritional comparison among Lablab beans will provide a fundamental guideline for determining suitable variants for functional food development, and it will be addressed by this study.

Figure 1. The most popular Lablab beans variant found in Indonesia are brown (A, D), black (B, E), and cream (C, F). The beans have been positioned to obtain the length (A-C) and the width (D-F).

The sample of the beans for this study was obtained from Sumenep, Madura Island, East Java, Indonesia during dry season in 2019. Details of the sample profiles and precise locations are as described in the previous study (Purwanti et al. 2019b). The beans were stored in 4°C until used. The beans were processed as per the extraction method previously mentioned in (Purwanti et al. 2022). Briefly, grounded beans were soaked in 96% ethanol with 3:1 ratio (volume in L and weight in kg) for 24 hours. The soaked beans powder then filtered to obtain the filtrate and homogenate. The filtrate then rotary evaporated to separate solvent and solute followed by freeze drying process to obtain Lablab beans' extract. The extract then processed to the subsequent analysis.

The crude fibre, total protein, and crude fat content were determined according to the previous protocol (Thiex 2009). Amylose and amylopectin content were also measured colorimetrically using a previously described method (McGrance et al. 1998). On the other hand, IKA C2000 Calorimeter System (IKA Works, Germany) was employed to calculate the total calories as per manufacturer's protocol.

To determine the secondary metabolites content, total phenol and total flavonoid was employed. Total flavonoid was performed as per a previous protocol with minor modifications (Pratami et al. 2018). Querce-tin was used as the standard flavonoid compound. The extract was dissolved in water, then 50 μ L of the dissolved extract was mixed with 10 μ L of 5% NaNO₂, followed by the addition of 150 μ L of water and 10 μ L of 1 M CH₃COONa, consecutively. The sample was then incubated at room temperature for 40 minutes. After incubation, the sample was quantified using a spectrophotometer at 415 nm wavelength. The total flavonoid concentration was described as percent (%) of Quercetin Equivalent (QE) according to the standard curve.

Total phenol was measured according to the previous study with minor modifications (Hyun et al. 2014), with gallic acid as the standard. The sample was diluted in water, and 100 μ L of the sample was added to 1 mL of Folin Ciocalteu reagent and incubated for 5 minutes at room temperature with minimum light ambiance. 1 mL of 7.5% Na₂CO₃ was added to the mixture, followed by incubation for 90 minutes in the same condition mentioned beforehand. Upon incubation, the sample was then quantified spectrophotometrically at 725 nm. The total phenol was defined as percentage of Gallic Acid Equivalent (GAE) as per the build standard curve.

The antioxidant activity was measured by DPPH scavenging and Ferric Reducing Antioxidant Potential (FRAP) assays. The method for DPPH scavenging and FRAP reducing power was performed as described in the earlier work (Irshad et al. 2012). All data were analysed by one-way ANOVA followed by Least Significant Difference (LSD) posthoc analysis. The data was determined as significantly different if the p-value is < 0.05. The data was then visualised as mean \pm standard deviation.

All Lablab bean variants have good nutritional content according to the caloric, total fibre, protein, crude fat, amylose, and amylopectin content. The fibre content of black Lablab bean was the highest, with 8% fibre content, followed by the cream and brown variants (table 1). The considerable content of dietary fibre in Lablab beans displayed an immense potential to be developed as a functional food. As commonly known, fibre consumption can improve physiological homeostasis, particularly in relations to lipid and glucose metabolism (Jahan et al. 2020). High fibre content is also suitable for dietary intervention to prevent obesity (Dayib et al. 2020). With regards to total protein content, cream beans had the same protein content as brown beans, while black beans had the lowest content of total proteins (table 1). The high percentage of total protein content in Lablab beans would be valuable as a candidate for functional foods since plant-based protein have broad health benefits, such as antioxidant, antiviral, antidiabetic, and anticancer properties (Maphosa et al. 2017; Liu et al. 2020; Sipahli et al. 2021; Roy et al. 2022; Purwanti et al. 2022). Nevertheless, specific treatment, such as isoelectric preparation, was suggested to obtain a protein isolate with adequate quality and good functional properties (Subagio 2006).

Cream beans have the highest percentage of crude fat among all variants (table 1). The low-fat content of Lablab beans exhibit a great potential as functional food compared to other beans since most legumes contain around 1,5% crude fat total (Etiosa et al. 2017). Low-lipid food

provides more health benefits with deleterious high-energy intake, particularly in areas with high level of famine cases (Delaš 2011; Robson 2013). For instance, West Nusa Tenggara province in Indonesia has the highest occurrence of hunger cases (Mone & Utami 2021). Interestingly, this region also founds a large distribution of Lablab beans (Jayanti et al. 2011). The utilization of Lablab beans to reduce the incidence of famine should be considered. Thus, the low-fat content of Lablab beans displayed their potential as a functional food candidate.

This study also measured the amount of amylose and amylopectin as part of its functional properties and energy source. The black Lablab bean has the highest amylose content, with 15% amylose content, followed by brown and cream (table 1). In contrast, black beans had the lowest amylopectin content compared to the other analysed variants (table 1). Similarly, black beans also had the lowest calorie per gram compared to other variants of Lablab beans (table 1). A food source with high amylopectin induces a better glycemic response, especially during fasting (Singhania & Senray 2012). This starch also provides higher energy intake than low amylopectin sources (Singhania & Senray 2012). Moreover, the increasing ratio of amylopectin/amylose reflects better nutrient digestibility (Gao et al. 2020). A diet containing large portion of amylopectin positively associated with the postprandial insulin response resulted in more efficient nutrient uptake and glucose metabolism (Gao et al. 2020). Therefore, brown and cream beans may become potential candidates as functional food.

This study demonstrated that Lablab beans have been found to have comparable levels of total protein with *Vigna radiata* and *Pisum sativum*, and even higher levels than *Glycine max* and *Lens culinaris* (Singh et al. 2022). In addition, Lablab beans have a favourable nutritional profile with higher dietary fibre and lower fat content compared to *Phaseolus vulgaris*, *L. culinaris*, *P. sativum*, and Edamame (Dhingra et al. 2012; Mullins & Arjmandi 2021; Didinger & Thompson 2021). The amylose content in Lablab beans was higher than *Cicer arietinum* and *G. max* (Tayade et al. 2019). Moreover, the amylose and amylopectin content in Lablab beans also similar with *V. angularis*, a "red pearls" that has good nutrients and hypoglycemic activity (Zhang et al. 2022).

The total phenolic and flavonoid contents evaluation demonstrated that brown beans exhibited the greatest content of flavonoid (p < 0.01), while the cream beans had the most negligible flavonoid content (table 2). On the other hand, the phenolic content was highest in black beans compared to other Lablab variants (p < 0.05, table 2). This result showed that Lablab beans have many phenolic compounds, with the flavonoid group being the most abundant in brown beans. In other words, the other variants may comprise of other phenolic compounds like phenolic acids, tannins, and other phenolic compounds (Purwanti et al. 2022). The current result was also higher than several edible beans, such as *P. vul*garis, *P. lunatus, V. radiata* and *C. arietinum* (Zhao et al. 2014). Nonethe-

Table 1. The comparison of primary metabolites and nutritional content among Lablab bean variants.

Variant	Fiber (%)	Protein (%)	Crude Fat (%)	Amylose (%)	Amylopectin (%)	Calorie (kcal/g)
Brown	$7.02\pm0.015^{\mathrm{a}}$	$24.91\pm0.06^{\rm a}$	$0.36\pm0.01^{\mathrm{a}}$	$14.41\pm0.095^{\mathrm{a}}$	$87.18 \pm 0.030^{\mathrm{a}}$	$3.86\pm0.005^{\mathrm{a}}$
Black	$8.16\pm0.040^{\rm b}$	$23.43\pm0.23^{\rm b}$	$0.45\pm0.03^{\rm b}$	$15.46 \pm 0.515^{\mathrm{b}}$	$85.79 \pm 0.015^{\mathrm{b}}$	$3.83\pm0.002^{\rm b}$
Cream	$8.11\pm0.005^{\rm c}$	$24.82\pm0.15^{\rm a}$	$0.55\pm0.04^{\mathrm{c}}$	$13.52\pm0.120^{\rm c}$	$87.90 \pm 0.025^{\circ}$	$3.85\pm0.002^{\mathrm{a}}$

Note: The data was presented as mean <u>+</u> standard deviations (n = 3). Different alphabetical notation indicates significant difference with p < 0.05 based on LSD test.

less, the total flavonoid contents of Lablab beans were lower compared to *P. sativum, C. arietinum, V. radiata, P. vulgaris, P. lunatus, L. culinaris, Vicia faba*, and *G. max* (Sharma & Giri 2022). Although flavonoids are the most abundant phenolic compounds with various biological activities (Kumar & Pandey 2013), other phenolic compounds, either simple phenols or polyphenols other than flavonoids, have also been reported to have bioactivities to improve physiological homeostasis, mainly through their antioxidant activity (Shahidi & Ambigaipalan 2015; Singh et al. 2017).

The high flavonoid content was positively correlated with antioxidant activity through DPPH scavenging activity, where brown beans had the highest scavenging activity compared to the others (table 2). However, the ferric reducing activity was stronger in variant with higher phenolic contents (table 2). These results were supported by a structureactivity relationship between radical scavenging from different phenolic compounds and the radical scavenging mechanism in DPPH and FRAP assay. Flavonoids have an ortho-dihydroxyl structure that plays a role in radical scavenging during DPPH assay by forming an intramolecular hydrogen bond and more stable ortho-hydroxyl phenoxyl radical during the oxidation process of radical scavenging (Zheng et al. 2010). Alternatively, other phenolic compounds, such as phenolic acids, have ortho or para position of the hydroxyl group in its benzene ring (Spiegel et al. 2020). Those structural differences influence the radical scavenging mechanism of flavonoids and other phenolic compounds in different antioxidant assay. Hydrogen Atom Transfer (HAT), Single-Electron Transfer followed by Proton Transfer (SET-PT), and Sequential Proton-Loss Electron Transfer (SPLET) are taking place during the DPPH assay. Contrary, SPLET is the main mechanism during the electron transfer enthalpy in (Chen et al. 2020). Ferulic Acid, Hythe FRAP reaction system droxycinnamic Acid, Sinapinic Acid, Coumaric Acid, and Isovanillic Acid are identified phenolic acids in Lablab beans. Also, Rutin and Isoquercetin are flavonoids that also found in Lablab beans (Purwanti et al. 2022). Those compounds were identified in adequate abundance in Lablab beans and may perform as radical scavenger during this study. Nevertheless, future studies are required to compare the secondary metabolites among different variant of Lablab beans to comprehend the phytochemical content differences better. Despite the different mechanisms and types of bioactive compounds in performing the antioxidant activity, it has been displayed that brown and black beans exhibit solid antioxidant properties.

This study shows that all Lablab bean variants have good amount of nutritional value, total phenol and flavonoid contents, and antioxidant activity. Lablab beans have adequate nutritional values surpassed other types of edible beans. Despite having lower flavonoid contents compared to commonly consumed beans, the phenolic compounds in these beans still exhibit superior performance. Finally, the cream variant shows slightly lower nutritional contents and bioactive compound compared to

Table 2. The total flavonoid, phenolic, and antioxidant capacity according to the DPPH scavenging capacity and FRAP analysis.

Variant	Total Flavonoid	Total Phenol	DPPH Scavenging	FRAP	
	(%)	(%)	(%)	(µM FeSO₄/mg)	
Brown	$26.25\pm0.34^{\mathrm{a}}$	40.56 ± 0.69^{a}	78.87 ± 1.59^{a}	1154.58 ± 4.17^{a}	
Black	$12.99\pm0.31^{\rm b}$	$45.28\pm2.56^{\rm b}$	40.01 ± 0.16^{b}	$2398.05 \pm 4.81^{\mathrm{b}}$	
Cream	$12.15 \pm 0.06^{\circ}$	40.32 ± 3.06^{a}	$24.53 \pm 0.16^{\circ}$	$1061.53 \pm 2.41^{\circ}$	

Notes: The data was presented in mean \pm standard deviations (n = 3). Different alphabetical notation indicates significant difference with p < 0.05 based on LSD test.

the other analysed Lablab beans. Still, some varieties possess a promising characteristic as a functional food candidate owing to their nutritional value.

AUTHORS CONTRIBUTION

EP designed the research and acquired the project funding, FE collected and analysed the data, WP and TIP wrote the manuscript, and IGNAW performed critical review and revision.

ACKNOWLEDGMENTS

The authors thank the Directorate of Research and Community Service (DPPM), University of Muhammadiyah Malang under PKID research grant scheme in 2022 (Grant No. E.2.a/334/BAA-UMM/IV/2022) for funding this work.

CONFLICT OF INTEREST

There is no conflict of interest raised in this study.

REFERENCES

- An, J.M. et al., 2020. Dolichos lablab L. extracts as pharmanutrient for stress-related mucosal disease in rat stomach. *Journal of Clinical Bi*ochemistry and Nutrition, 67(1), pp.89–101. doi: 10.3164/jcbn.20-11.
- Bai-Ngew, S. et al., 2021. Antimicrobial activity of a crude peptide extract from lablab bean (Dolichos lablab) for semi-dried rice noodles shelf-life. *Quality Assurance and Safety of Crops & Foods*, 13(2), pp.25– 33. doi: 10.15586/qas.v13i2.882.
- Çakir, Ö. et al., 2019. Nutritional and health benefits of legumes and their distinctive genomic properties. *Food Science and Technology*, 39, pp.1 -12. doi: 10.1590/fst.42117.
- Chen, J. et al., 2020. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. *Scientific Reports*, 10(1), 2611. doi: 10.1038/s41598-020-59451z.
- Considine, M.J., Siddique, K.H.M. & Foyer, C.H., 2017. Nature's pulse power: legumes, food security and climate change. *Journal of Experimental Botany*, 68(8), pp.1815–1818. doi: 10.1093/jxb/erx099.
- Dayib, M., Larson, J. & Slavin, J., 2020. Dietary fibers reduce obesityrelated disorders: mechanisms of action. *Current Opinion in Clinical Nutrition & Metabolic Care*, 23(6), pp.445–450. doi: 10.1097/ MCO.000000000000696.
- Delaš, I., 2011. Benefits and hazards of fat-free diets. Trends in Food Science & Technology, 22(10), pp.576–582. doi: 10.1016/ j.tifs.2011.08.008.
- Dhingra, D. et al., 2012. Dietary fibre in foods: a review. Journal of Food Science and Technology, 49(3), 255. doi: 10.1007/s13197-011-0365-5.
- Didinger, C. & Thompson, H.J., 2021. Defining Nutritional and Functional Niches of Legumes: A Call for Clarity to Distinguish a Future Role for Pulses in the Dietary Guidelines for Americans. Nutrients, 13(4), 1100. doi: 10.3390/nu13041100.

- Etiosa, O.R., Chika, N.B. & Benedicta, A., 2017. Mineral and Proximate Composition of Soya Bean. Asian Journal of Physical and Chemical Sciences, pp.1–6. doi: 10.9734/AJOPACS/2017/38530.
- Gao, X. et al., 2020. Effects of Dietary Starch Structure on Growth Performance, Serum Glucose–Insulin Response, and Intestinal Health in Weaned Piglets. *Animals*, 10(3), p.543. doi: 10.3390/ ani10030543.
- Hermanto, F.E. et al., 2022a. On The Hypolipidemic Activity of Elicited Soybeans: Evidences Based on Computational Analysis. *Indonesian Journal of Chemistry*, 22(6), pp.1626–1636. doi: 10.22146/ijc.75777.
- Hermanto, F.E. et al., 2022b. Understanding hypocholesterolemic activity of soy isoflavones: Completing the puzzle through computational simulations. *Journal of Biomolecular Structure and Dynamics*, in press, pp.1–7. doi: 10.1080/07391102.2022.2148752.
- Hyun, T.K., Kim, H.C. & Kim, J.S., 2014. Antioxidant and antidiabetic activity of Thymus quinquecostatus Celak. *Industrial Crops and Products*, 52, pp.611–616. doi: 10.1016/j.indcrop.2013.11.039.
- Irshad, M. et al., 2012. Comparative Analysis of the Antioxidant Activity of Cassia fistula Extracts. *International Journal of Medicinal Chemistry*, 2012, 157125. doi: 10.1155/2012/157125.
- Jahan, K., Qadri, O.S. & Younis, K., 2020. Dietary Fiber as a Functional Food. In *Functional Food Products and Sustainable Health*. Singapore: Springer, pp. 155–167. doi: 10.1007/978-981-15-4716-4_10.
- Jayanti, E.T., Kasiamdari, R.S. & Daryono, B.S., 2011. Morphological Variation and Phenetic Relationship of Hyacinth Bean (Lablab purpureus (L.) Sweet) in Lombok, West Nusa Tenggara. Proceeding ICBB (The International Conference on Bioscience and Biotechnology), 1 (1), pp.C9–C15.
- Kumar, S. & Pandey, A.K., 2013. Chemistry and biological activities of flavonoids: an overview. *TheScientificWorldJournal*, 2013, 162750. doi: 10.1155/2013/162750.
- Liu, Y.M. et al., 2020. A Carbohydrate-Binding Protein from the Edible Lablab Beans Effectively Blocks the Infections of Influenza Viruses and SARS-CoV-2. *Cell Reports*, 32(6), 108016. doi: 10.1016/ j.celrep.2020.108016.
- Maass, B.L. et al., 2010. Lablab purpureus—A Crop Lost for Africa? *Tropical Plant Biology*, 3(3), pp.123–135. doi: 10.1007/s12042-010-9046-1.
- Maheshu, V., Priyadarsini, D.T. & Sasikumar, J.M., 2013. Effects of processing conditions on the stability of polyphenolic contents and antioxidant capacity of Dolichos lablab L. *Journal of Food Science and Technology*, 50(4), pp.731–738. doi: 10.1007/s13197-011-0387-z.
- Maphosa, Y. et al., 2017. The Role of Legumes in Human Nutrition, IntechOpen. doi: 10.5772/intechopen.69127.
- McGrance, S.J., Cornell, H.J. & Rix, C.J., 1998. A Simple and Rapid Colorimetric Method for the Determination of Amylose in Starch Products. Starch Stärke, 50(4), pp.158–163. doi: 10.1002/(SICI) 1521-379X(199804)50:4<158::AID-STAR158>3.0.CO;2-7.

- Missanga, J.S., Venkataramana, P.B. & Ndakidemi, P.A., 2021. Recent developments in Lablab purpureus genomics: A focus on drought stress tolerance and use of genomic resources to develop stressresilient varieties. *Legume Science*, 3(3), p.e99. doi: 10.1002/leg3.99.
- Mone, D.M.V. & Utami, E.D., 2021. Determinan Kelaparan di Indonesia Tahun 2015-2019. Seminar Nasional Official Statistics, 2021(1), pp.547-556. doi: 10.34123/semnasoffstat.v2021i1.962.
- Mullins, A.P. & Arjmandi, B.H., 2021. Health Benefits of Plant-Based Nutrition: Focus on Beans in Cardiometabolic Diseases. *Nutrients*, 13(2), p.519. doi: 10.3390/nu13020519.
- Piergiovanni, A.R., 2021. Legumes: staple foods used in rituals and festive events of Apulia region (southern Italy). *Food, Culture & Society*, 24(4), pp.543–561. doi: 10.1080/15528014.2021.1884420.
- Polak, R., Phillips, E.M. & Campbell, A., 2015. Legumes: Health Benefits and Culinary Approaches to Increase Intake. *Clinical Diabetes: A Publication of the American Diabetes Association*, 33(4), pp.198–205. doi: 10.2337/diaclin.33.4.198.
- Pratami, D. et al., 2018. Phytochemical Profile and Antioxidant Activity of Propolis Ethanolic Extract from Tetragonula Bee. *Pharmacognosy Journal*, 10(1), pp.128–135. doi: 10.5530/pj.2018.1.23.
- Purwanti, E., Prihanta, W. & Fauzi, A., 2019a. Nutritional Content Characteristics of Dolichos lablab L. Accessions in Effort to Investigate Functional Food Source. *Atlantis Press*, pp. 166–170. doi: 10.2991/ iccd-19.2019.45.
- Purwanti, E., Prihanta, W. & Fauzi, A., 2019b. The Diversity of Seed Size and Nutrient Content of Lablab Bean from Three Locations in Indonesia. *International Journal of Advanced Engineering, Management* and Science, 5(6), pp.395–402. doi: 10.22161/ijaems.5.6.7.
- Purwanti, E. et al., 2021. Exploring public health benefits of Dolichos lablab as a dietary supplement during the COVID-19 outbreak: A computational study. *Journal of Applied Pharmaceutical Science*, 11, (2), pp.135–140. doi: 10.7324/JAPS.2021.110217.
- Purwanti, E. et al., 2022. Unfolding Biomechanism of Dolichos lablab Bean as A Dietary Supplement in Type 2 Diabetes Mellitus Management through Computational Simulation. *Research Journal of Pharmacy and Technology*, 15(7), pp.3233–3240. doi: 10.52711/0974– 360X.2022.00542.
- Robson, A.A., 2013. Chapter 25 Preventing the Epidemic of Non-Communicable Diseases: An Overview. In R. R. Watson & V. R. Preedy, eds. *Bioactive Food as Dietary Interventions for Liver and Gastrointestinal Disease*. San Diego: Academic Press, pp. 383–400. doi: 10.1016/B978-0-12-397154-8.00016-6.
- Roy, M. et al., 2022. Evaluation of quality parameters and antioxidant properties of protein concentrates and hydrolysates of hyacinth bean (Lablab purpureus). *Legume Science*, 4(2), p.e128. doi: 10.1002/leg3.128.

- Shahidi, F. & Ambigaipalan, P., 2015. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects
 A review. *Journal of Functional Foods*, 18, pp.820–897. doi: 10.1016/j.jff.2015.06.018.
- Sharma, K.R. & Giri, G., 2022. Quantification of Phenolic and Flavonoid Content, Antioxidant Activity, and Proximate Composition of Some Legume Seeds Grown in Nepal. *International Journal of Food Science*, 2022, e4629290. doi: 10.1155/2022/4629290.
- Singh, B. et al., 2017. Phenolic composition and antioxidant potential of grain legume seeds: A review. *Food Research International*, 101, pp.1 -16. doi: 10.1016/j.foodres.2017.09.026.
- Singh, N. et al., 2022. Escalate protein plates from legumes for sustainable human nutrition. *Frontiers in Nutrition*, 9, 977986. doi: 10.3389/fnut.2022.977986.
- Singhania, P.R. & Senray, K., 2012. Glycemic response to amylopectin rich starch present in common fasting foods of India. *Nutrition & Food Science*, 42(3), pp.196–203. doi: 10.1108/00346651211228496.
- Sipahli, S. et al., 2021. In vitro antioxidant and apoptotic activity of Lablab purpureus (L.) Sweet isolate and hydrolysates. *Food Science and Technology*, 42, e55220. doi: 10.1590/fst.55220.
- Spiegel, M. et al., 2020. Antioxidant Activity of Selected Phenolic Acids-Ferric Reducing Antioxidant Power Assay and QSAR Analysis of the Structural Features. *Molecules (Basel, Switzerland)*, 25(13), 3088. doi: 10.3390/molecules25133088.
- Subagio, A., 2006. Characterization of hyacinth bean (Lablab purpureus (L.) sweet) seeds from Indonesia and their protein isolate. *Food Chemistry*, 95(1), pp.65–70. doi: 10.1016/j.foodchem.2004.12.042.
- Tayade, R. et al., 2019. Insight Into the Prospects for the Improvement of Seed Starch in Legume—A Review. Frontiers in Plant Science, 10, 1213. doi: 10.3389/fpls.2019.01213.
- Thiex, N., 2009. Evaluation of Analytical Methods for the Determination of Moisture, Crude Protein, Crude Fat, and Crude Fiber in Distillers Dried Grains with Solubles. *Journal of AOAC INTERNATION-AL*, 92(1), pp.61–73. doi: 10.1093/jaoac/92.1.61.
- Zhang, L. et al., 2022. Analysis and Research on Starch Content and Its Processing, Structure and Quality of 12 Adzuki Bean Varieties. *Foods*, 11(21), p.3381. doi: 10.3390/foods11213381.
- Zhao, Y. et al., 2014. In vitro antioxidant activity of extracts from common legumes. *Food Chemistry*, 152, pp.462–466. doi: 10.1016/ j.foodchem.2013.12.006.
- Zheng, C.D. et al., 2010. DPPH-Scavenging Activities and Structure-Activity Relationships of Phenolic Compounds. *Natural Product Communications*, 5(11), pp.1759-1765. doi: 10.1177/1934578X1000501112.