BAB II TINJAUAN PUSTAKA

2.1 Penelitian Terdahulu

Peneliti dapat memanfaatkan studi-studi sebelumnya sebagai dasar untuk alur penelitian ini dalam menggunakan teknik *Equivalence Partitioning* dan pendekatan Pengujian *Black Box*. Ditunjukkan di bawah ini dalam **Tabel 2.1**.

Tabel 2. 1 Penelitian Terdahulu

No	Penulis	Judul Penelitian	Hasil Penelitan
	(tahun)		
1	Br Kembaren	Analysis	Hasil pengujian menunjukkan bahwa
	S, Kurniasari	Perbandingan	ECP menghasilkan kasus uji sebanyak
	E, Sukirman E	Teknik	32 butir dengan hasil 25 berhasil dan 7
11	(2024) [15]	Equivalence Class	gagal, memberikan tingkat keberhasilan
1		Partition Dan	sebesar 78,125%. Sementara itu, BVA
		Teknik Boundary	memiliki 21 kasus uji dengan 14 berhasil
		Value Analysis	dan 7 gagal, menghasilkan tingkat
		Pada Website	keberhasilan sebesar 66,7%. Temuan ini
1		Karang Taruna	menunjukkan bahwa ECP lebih unggul
		Kusuma Muda	dibandingkan BVA dalam beberapa
1	11 40		aspek penting, termasuk tingkat
			keberhasilan kasus uji dan kebocoran
			defek, dengan ECP mencatat kebocoran
		MAL	defek sebesar 21,875% dibandingkan
			dengan 33,3% untuk BVA. Kesimpulan
			dari penelitian ini merekomendasikan
			penggunaan ECP sebagai metode yang
			lebih efektif untuk pengujian dengan
			rentang data yang lebih luas, sementara
			BVA lebih cocok untuk sistem yang

			berfokus pada nilai batas. Penelitian ini
			ini juga mengusulkan studi tambahan
			menggunakan metode bukti lain seperti
			State Transition Testing dan Decision
			Table.
2	D. Triady, I.	Pengujian	Temuan penelitian ini menunjukkan
	Alwiah	Blackbox Pada	efektivitas pengujian black box dengan
	Musdar, and	Website Worker's	pendekatan equivalence partitioning
	H. Surasa	Menggunakan	dalam mengidentifikasi kelemahan
	(2023) [16]	Metode	perangkat lunak. Dari 29 test case yang
		Equivalence	dijalankan, 32% gagal dan 68% berhasil.
	27/	Partitioning	Selain itu, studi ini menunjukkan bahwa
	3		program menampilkan pemberitahuan
		115	ketika tidak ada lowongan yang
1			terdeteksi, dan menyarankan agar
11		= 10 m	pendekatan partisi kesetaraan
-			digabungkan dengan metode kotak
- \\			hitam lainnya untuk perbaikan lebih
- \\			lanjut.
3	Anargya, Gilly	Pengujian	Hasil penelitian ini menunjukkan bahwa
1	Huga [17]	RESTful API	pengujian <i>black box</i> menggunakan
	11 24 3	Pada Website	metode equivalence partitioning efektif
		Monitoring Kartu	untuk mendeteksi kesalahan dalam
		Santri	perangkat lunak. didapatkan nilai
		Menggunakan	efektivitas sebesar 100%, yang tidak
		Metode	hanya memenuhi tetapi juga melebihi
		Equivalence	batas sebelumnya yaitu sebesar 80%.
		Partitions	Hasil perhitungan akhir menunjukkan
			bahwa API website Monitoring Kartu
			Santri memiliki persentase kelayakan

	yang berada dalam kategori "Sangat
	Layak". Akibatnya, pengujian ini telah
	menunjukkan tingkat keberhasilan yang
	jauh melebihi nilai efektivitas yang telah
	ditetapkan sebelumnya.

2.2 Pengujian Perangkat Lunak

Pengujian perangkat lunak adalah proses pengujian program untuk memastikan program berfungsi dengan baik dan untuk memeriksa masalah. Perangkat lunak yang memenuhi harapan dan menawarkan produktivitas tinggi dianggap sebagai perangkat lunak yang baik [18]. Salah satu proses yang sangat penting dalam pengembangan perangkat lunak adalah pengujian perangkat lunak. Berdasarkan standar (ANSI/IEEE 1959), pengujian adalah proses analisis suatu entitas software untuk mengidentifikasi kecacatan, kesalahan, atau kegagalan, serta untuk mengevaluasi fitur entitas software. Diharapkan bahwa pengujian perangkat lunak dapat mengurangi kesalahan dan cacat perangkat lunak dan menggunakannya sebagai pengukuran kualitas software. Pengujian perangkat lunak memiliki beberapa jenis diantaranya adalah White Box Testing, Gray Box Testing serta Black Box Testing [6].

2.3 Black Box Testing

Pengujian perangkat lunak yang berkonsentrasi pada persyaratan fungsional program dikenal sebagai pengujian *Black Box*. Spesifikasi fungsional perangkat lunak dapat diuji setelah penguji membuat serangkaian kondisi masukan. [19]. Kesalahan dalam beberapa kategori diidentifikasi oleh pengujian *Black Box*. Ini termasuk fungsi yang hilang atau kegagalan fungsi, kesalahan *interface*, kecacatan performa, kecacatan struktur data, kekeliruan terminasi dan inisialisasi [7]. Keuntungan pengujian dalam *Black Box* adalah bahwa mereka dilakukan dari sudut pandang pengguna. Ini memungkinkan penguji untuk menemukan ambiguitas atau ketidakkonsistenan dalam spesifikasi persyaratan karena mereka tidak perlu mengetahui bahasa pemrograman tertentu. [20]. *Black Box* memiliki

berbagai Teknik pengujian seperti Teknik Fuzzing, Boundary Value Analysis, Teknik Cause-Effect Graph, Equivalence Partitioning [8].

2.4 Equivalence Partitioning

Pada penelitiaan ini uji coba situs web SITS menggunakan metode *Black Box* dengan pendekatan Teknik *Equivalence Partitioning*. Pemilihan ini didasarkan karena Teknik Equivalence Partitioning dapat mengujikan pada tipe data dengan jangkauan yang lebih bebas dan sesuai untuk memvalidasi segala kemungkinan berdasarkan kriteria [9]. Teknik *Equivalence Pertitioning* dilakukan dengan cara membagi input pada perangkat lunak dimasukkan ke dalam beberapa kelas data sebagai bahan kasus uji [10]. Teknik pengujian ini menyederhanakan proses pembuatan kasus uji dan membuat ketepatan entri data yang sesuai dengan fungsi lebih lengkap [11]. Partisi dalam EP berupa kondisi *valid* dan *invalid*, dimana penetapan kondisi *valid* dibuat sesuai dengan ketentuan yang ada, sedangkan untuk kondisi *invalid* dibuat ketika nilai inputan tidak sesuai dengan ketentuan. enam langkah diambil dalam pengujian menggunakan metode equivalence partitioning ini:

a. Penentuan Basis Percobaan

Tahap ini mengumpulkan data tentang sistem yang diuji, termasuk fitur apa saja yang akan diujikan, dan digunakan sebagai dasar untuk merancang kasus uji.

b. Menentukan Kriteria

Tahap ini akan menentukan kriterian dari setiap inputan yang ada pada fitur yang diuji.

c. Pendefinisian Partisi

Tahap ini mendefinisikan partisi dengan menentukan batasan dengan nilai (v) yang valid dan (iv) yang tidak valid.

d. Penetuan Data Uji

Tahap ini untuk menentukan data yang akan digunakan pada saat pengujian.

e. Penentuan Kasus uji

Kasus uji dibuat dengan tujuan untuk digunakan sebagai referensi pengujian berikutnya.

f. Pengujian

Tahap pengujian yaitu kasus yang telah dibuat sebelumnya akan diuji pada tahap ini. untuk mengetahui hasil testing.

