Mathematics Education and Graph Theory
Mathematics Education and Graph Theory

PROCEEDINGS OF INTERNATIONAL SEMINAR ON MATHEMATICS EDUCATION AND GRAPH THEORY

Unit of Publication
Department of Mathematics Education
Faculty of Teacher Training and Education
Islamic University of Malang (UNISMA)
2014
MATHEMATICS EDUCATION AND GRAPH THEORY
Proceedings of International Seminar on Mathematics Education and Graph Theory
© Department of Mathematics Education Faculty of Teacher Training and Education
Islamic University of Malang, 2014

These proceedings contain the full texts of paper and talks presented in the International Seminar on Mathematics Education and Graph Theory on June 9, 2014

Reviewers
Surahmat Supangken (UNISMA, Indonesia)
Abdur Rahman As’ari (UM, Indonesia)
Kiki Ariyanti Sugeng (UI, Indonesia)
Sunismi (UNISMA, Indonesia)
Akhsanul In’am (UMM, Indonesia)

Editors
Mustangin
Abdul Halim Fathani

Layouter
Teguh Permadi

First published, 2014
ISBN 978-602-71141-0-4

Published by

Unit of Publication
Department of Mathematics Education
Faculty of Teacher Training and Education
Islamic University of Malang (UNISMA)
Malang, East Java, Indonesia
Phone +62341-551932, 551822.
Fax +62341-552249
http://www.unisma.ac.id
PREFACE

These proceedings contain the full text of papers and talks presented in the International Seminar on Mathematics Education and Graph Theory. This seminar was held in conjunction with the International Workshop on Graph Masters. The workshop was held on June 7–8, 2014, while the seminar was on June 9, 2014. These events were organized by Islamic University of Malang (Unisma) in cooperation with Indonesian Combinatorial Society (InaCombS).

The workshop and the seminar would not have been possible without the time and energy put forth by the invited speakers. The invited speakers of the workshop were: Mirka Miller, University of Newcastle, Australia; Joseph Miret, Universitat de Lleida, Spain; Christian Mauduit, Institut de Mathematiques de Luminy, France; Edy T. Baskoro, Bandung Institute of Technology, Indonesia; Surahmat Supangken, Islamic University of Malang, Indonesia; Tri Atmojo, State University of Semarang, Indonesia; and Purwanto, State University of Malang, Indonesia.

The invited speakers of the seminar were: Juddy Anne Osborn, University of Newcastle, Australia and Abdur Rahman As’ari, State University of Malang, Indonesia. The seminar was held on the area of mathematics education and graph theory. The main themes of the mathematics education seminar include topics within the following areas (but not limited to): philosophy of mathematics education, curriculum development, learning methods and strategies, learning media, development of teaching material, and assessment and evaluation of learning. The main themes covered in graph theory seminar include topics within the following areas (but not limited to): degree (diameter) problems, ramsey numbers, cycles in graphs, graph labeling, dimensions of graphs, graph coloring, algorithmic graph theory, and applications of graph theory in various fields.

We would like to thank you to the invited speakers and all presenters who have submitted papers, for their valuable and inspiring presentation. A special appreciation goes to: Surahmat Supangken, Rector of Unisma and Kiki Ariyanti Sugeng, the President of InaCombS, who have made a lot of efforts to prepare this seminar.

We also do not forget to express our gratitude to Islamic University of Malang (Unisma) for providing financial support, and to the Indonesian Combinatorial Society (InaCombS) for the support. We hope that you had a great time and valuable experience during the seminar in Malang.

Malang, July 22, 2014

Editors
TABLE OF CONTENTS

Preface __ iii
Table of Contents __ v

MATHEMATICS EDUCATION:
THEORETICAL (CONCEPTUAL) ARTICLES

OPTIMIZING PROBLEM SOLVING ACTIVITY FOR TEACHING MATHEMATICAL THINKING
Abdur Rahman As’ari 3–9

CONSTRUCTION THEORY OF CRITICAL THINKING AS PROCESS TOWARDS REFRACTION THINKING IN MATHEMATICS
Anton Prayitno, Akbar Sutawidjaja, Subanji, Makbul Muksar 10–16

CONCEPT IMAGE AND CONCEPT DEFINITION OF A STUDENT’S CONCEPT UNDERSTANDING
Budi Nurwahyu 17–26

DEVELOPMENT OF TACIT KNOWLEDGE DIMENTION FOR MATHEMATICS NOVICE TEACHERS
Edy Bambang Irawan 27–31

DEVELOPING THE STUDENT’S MATHEMATICAL REPRESENTATION AND ABSTRACTION ABILITY THROUGH GUIDED DISCOVERY LEARNING
Eka Setyaningsih 32–38

IDENTIFICATION THE UNI-CONNECTED MATHEMATICAL THINKING PROCESS IN MATH PROBLEM SOLVING
Elly Susanti, I Nengah Parta, Tjang Daniel Chandra 39–49

BLENDED LEARNING AS A WAY TO OPTIMIZE SEMESTER CREDIT SYSTEM (SCS)
Hapizah 50–55

MAKING MATHEMATICAL CONNECTIONS IN SOLVING CONTEXTUAL MATHEMATICS PROBLEM: THEORETICAL REVIEW FROM THE PERSPECTIVE OF IQ AND GENDER
Karim 56–64

THE ROLE OF LANGUAGE, LOGIC, AND MATH IN SCIENCE AND TECHNOLOGY DEVELOPMENT
M. Kharis 65–68

REPRESENTATION OF MATHEMATICAL CONCEPT IN THE DIFFERENT PERSPECTIVE THEORY OF UNDERSTANDING
Mustangin 69–77
BUILD MATHEMATICAL KNOWLEDGE THROUGH PROBLEM-SOLVING STRATEGY
Saleh Haji 78–81

NINE STRATEGIES OF CRITICAL THINKING DEVELOPMENT: A LITERATURE REVIEW
Slamet 82–85

MATHEMATICS EDUCATION:
RESEARCH AND DEVELOPMENT ARTICLES

IMPLEMENTATION OF PROPS “FASKAL” TO RAISE ALGEBRA FACTORIZATION CONCEPT IN AISIYAH ORPHANAGE SUMBERSARI - JEMBER DISTRICT
Abi Suwito 89–94

THE PROFILE OF PROBLEM SOLVING ON OPEN ENDED PROBLEMS OF STUDENTS WITH INTERMEDIATE LEVEL OF MATHEMATICS COMPETENCE
Agung Deddiliawan Ismail 95–99

METACOGNITIVE AWARENESS ASPECTS IN SOLVING ALGEBRA
Akhsanul In’am 100–104

DEVELOPING SELF-RENEWAL CAPACITY SCALE BASED ON PACE MODEL
Andri Suryana 105–109

DIAGNOSTIC DIFFICULTY STUDENTS ORGANIZATION AT THE UNIVERSITY OF GUNUNG JATI IN PROVING USING MATHEMATICAL INDUCTION AND EFFORTS TO OVERCOME USING SCAFFOLDING
Azin Taufik 110–116

CHARACTERISTICS OF THINKING PROCESSES OF ELEMENTARY SCHOOL STUDENTS WITH MODERATE ABILITY IN MATHEMATICS PROBLEMS SOLVING
Baiduri 117–123

TEACHER’S KNOWLEDGE OF CONTENTS AND STUDENTS (KCS) ON QUADRILATERALS: CASE STUDY
Bettisari Napitupulu 124–134

HOW TO IMPROVE STUDENTS’ ABILITY IN QUESTIONING BY ASKING THEIR RESPONSIBILITY OF WHAT THEY LEARN
Budi Mulyono 135–139

TEACHING MATHEMATICS TO 0 – 1 YEAR OLD BABIES
Christine Wulandari 140–155

DEVELOPMENT OF MATHEMATICS LEARNING MATERIALS WITH ANCHORED INSTRUCTION MODEL FOR DISABILITY STUDENT IN INCLUSION CLASS
Dian Kristanti, Cholis Sa’dijah, Tjang Daniel Chandra 156–175
IMPLEMENTATION OF THE FIRST YEAR LESSON STUDY TO IMPROVE THE LEARNING QUALITY IN MATHEMATICS EDUCATION STUDY PROGRAM UNIVERSITY OF JEMBER
Dian Kurniati 176–180

THE THINKING PROCESS OF JUNIOR HIGH SCHOOL STUDENTS ON THE CONCEPT OF RECTANGLE REVIEWED BY THEIR COGNITIVE STYLES
Endah Budi Rahaju 181–190

BARRIERS TO STUDENT THINKING IN SOLVING THE PROBLEM OF FACTORING ALGEBRAIC FORM BASED ON THE LEVEL OF ALGEBRAIC THINKING AND SCAFFOLDING
Hairus Saleh, Ukhti Raudhatul Jannah 191–207

LEARNING MEDIA “PUTRI” IN IMPROVING TRIGONOMETRY LEARNING OUTCOMES AT SMK (VOCATIONAL SCHOOL)
Hastini Ratna Dewi, Wiwik Sugiarti 208–217

METHOD OF INDUCTION IN THE PROCESS OF MASTERING CALCULUS IN MECHANICS
Hendra Gunawan 218–223

THE REFLECTIVE THINKING STUDENT WITH LOGIC APPROACH IN PROBLEMS SOLVING OF SPEED, DISTANCE, AND TIME
Hery Suharna, Subanji, Toto Nusantara 224–228

DEVELOPING RESEARCH INSTRUMENTS FOR PROFILING COGNITIVE PROCESSES OF STUDENT IN CONSTRUCTING MATHEMATICAL CONJECTURE FROM INDUCTION PROBLEMS
I Wayan Puja Astawa 229–236

THE PROFILE OF REASONING SCHOOLGIRLS ELEMENTARY SCHOOL WHO HAVE HIGH MATHEMATICS ABILITY IN PROBLEMS SOLVING OF FRACTION
Iis Holisin 237–246

A COGNITIVE LOAD OF THE SEVENTH GRADE STUDENTS IN TEACHING MATHEMATICS AT SMP NEGERI 3 MALANG
Isbadar Nursit 247–253

THE DEVELOPMENT OF INSTRUMENTS TO IDENTIFIY CRITICAL THINKING SKILL OF JUNIOR HIGH SCHOOL STUDENTS IN SOLVING CRITICAL THINKING MATHEMATICS PROBLEMS
Ismail 254–265

DEVELOPING A MATHEMATICS MODULE WITH CONTEXTUAL APPROACH AND ISLAMIC VALUES USING ADOBE FLASH CS3 AS A MATHEMATICS LEARNING RESOURCE FOR STUDENTS IN SMP/MTS
Mulin Nu'man, Ibrahim 266–285

DESIGNING VIDEOS OBSERVATIONS PROJECT THROUGH SCIENTIFIC APPROACH WITH AUTHENTIC ASSESSMENT TO INTEGRATE STUDENTS’ KNOWLEDGES IN MATHEMATICS TEACHING AND LEARNING
Nurcholif Diah Sri Lestari 286–295
DEVELOPING SELF EFFICACY SCALE WITH THE ORIENTATION OF WEB-ASSISTED BRAIN-BASED LEARNING
Nuriana Rachmani Dewi (Nino Adhi) 296–301

TEACHER’S INTERACTION PROCESS IN ASSISTING STUDENTS OF SMAN 10 MALANG TO CONSTRUCT CONCEPT OF COMPREHENSION IN PROBABILITY MATERIAL
Ratna Widyastuti 302–313

THE ANALYSIS OF STUDENTS DIFFICULTIES IN SOLVING PROBLEMS OF SET
Rohana 314–321

MATHEMATICS LEARNING BY MIND MAPPING METHOD
Ryan Angga Pratama, Alhamidun 322–327

CHARACTERIZATION OF ALGEBRAIC THINKING Process OF STUDENTS IN PATTERN GENERALIZING BASED APOS THEORY
Siti Inganah, Purwanto, Subanji, Swasono Rahardjo 328–337

MATHEMATICAL COMMUNICATION PROFILE OF FEMALE-FIELD INDEPENDENT STUDENT OF JUNIOR HIGH SCHOOL IN SOLVING PROBLEM
Sudi Prayitno 338–344

THE EFFECTS OF REALISTIC MATHEMATICS EDUCATION AND STUDENTS’ COGNITIVE DEVELOPMENT LEVELS ON THE UNDERSTANDING OF CONCEPTS AND THE ABILITY IN SOLVING MATHEMATICAL PROBLEMS BY JUNIOR HIGH SCHOOL STUDENTS
Sunismi 345–359

THE IMPROVEMENT OF STUDENT UNDERSTANDS OF ADDITION AND REDUCTION FRACTION CONCEPT THROUGH REALISTIC MATHEMATIC EDUCATION (RME) WITH MANIPULATIVE MATERIALS IN THE 4TH GRADE OF SDN GADANG I MALANG
Surya Sari Faradiba 360–364

RESEARCH INSTRUMENT DEVELOPMENT OF STUDENTS’ REASONING PROCESS IN PROVING THEOREM
Susanah 365–377

PROFILE OF STUDENT’S INTUITION IN THE ANALYSIS OF THE VAN HIELE LEVEL IN GEOMETRY PROBLEM SOLVING
Susilo Bekti 378–387

STUDENT’S FOLDING BACK WHICH HAS A TENDENCY ON CONCEPTUAL KNOWLEDGE IN UNDERSTANDING LIMIT DEFINITION
Susiswo 388–403

DEVELOPING TEACHING REALISTIC MATHEMATIC INTERACTIVE HANDBOOK ON STATISTICS SETTING ON ISLAMIC BOARDING SCHOOL OF IX GRADE MTs
Suwarno 404–413
INSTRUCTIONAL MATERIALS DEVELOPMENT ON CALCULUS II COURSE USING MATHEMATICS MOBILE LEARNING (MML) APPLICATION
Sunismi, Abdul Halim Fathani 414–429

PATTERN AND STRUCTURE MATHEMATICS AWARENESS CONTRIBUTED TO NUMBER SENSE EARLY CHILDHOOD
Timbul Yuwono 430–437

MIDDLE SCHOOL STUDENTS’ COVARIATIONAL REASONING IN CONSTRUCTING GRAPH OF FUNCTION
Ulumul Umah, Abdur Rahman As’ari, I Made Sulandra 438–448

THE ANALYSIS ON STUDENTS’ ERRORS IN SOLVING MATHEMATICAL WORD PROBLEMS OF CUBE AND BLOCK MATERIALS BASED ON THE STAGES OF NEWMAN’S ERROR ANALYSIS
Umi Farihah, Moh Nashihudin 449–457

SIGNIFICANCE TRAINING OF PEDAGOGICAL AND PROFESSIONAL COMPETENCY THROUGH PEER LESSON METHOD IN DISCRETE MATHEMATICS SUBJECT
Wasilatul Murtafiah 458–468

THE DEVELOPMENT OF MATHEMATICS E-PORTFOLIO ASSESSMENT MODEL FOR SENIOR HIGH SCHOOL
Zainal Abidin, Sikky El Walida 469–476

PROCESS OF SPATIAL REASONING ON VOCATIONAL STUDENT HIGH ABILITY IN CONSTRUCTION CUBE (CASE STUDY ON STUDENTS WHO HAVING HIGH SPATIAL ABILITY)
Zuraidah 477–488

GRACEFUL LABELING ON BAT GRAPH $B_t(n,r,s)$
Annisa Dini Handayani, Kiki A Sugeng 491–494

THE ANALYSIS OF AIR CIRCULATION ON COFFEE PLANTATION BASED ON THE LEVEL OF PLANTS ROUGHNESS AND DIAMOND LADDER GRAPH CROPPING PATTERN USING FINITE VOLUME METHOD
Arif Fatahillah, Dafik, Ervin Eka Riastutik, Susanto 495–498

DEVELOPING MST, TSP, AND VRP APPLICATION
Darmawan Satyananda 499–508

SUPER (a,d)-VERTEX ANTIMAGIC TOTAL LABELING ON DIRECTED CYCLE GRAPH
Devi Eka Wardani Meganingtyas, Dafik, Slamin 509–515

SPECTRUM OF ANTIADJACENCY MATRIX OF SOME UNDIRECTED GRAPHS
Fitri Alyani, Kiki A Sugeng 516–519

ISBN 978-602-71141-0-4
THE LOCATING CHROMATIC NUMBER OF STRONG PRODUCT OF COMPLETE GRAPH AND OTHER GRAPH

THE CHARACTERISTICS OF CRITICAL SET IN EDGE MAGIC TOTAL LABELING ON BANANA TREE GRAPH
Irham Taufiq, Triyani, Siti Rahmah Nurshiani 524–527

VERTEX COLORING BY TOTAL LABELINGS OF SUN, WHEEL AND PRISM GRAPHS
Isnaini Rosyida, Widodo, Ch. Rini Indrati, Kiki A. Sugeng 528–533

ON DISCONNECTED RAMSEY (3K_2, K_3)-MINIMAL GRAPHS
Kristiana Wijaya, Edy Tri Baskoro, Hilda Assiyatun, Djoko Suprijanto 534–537

TEACHING COMBINATORIAL GAMES INTERACTIVELY USING MAPLETS
Loeky Haryanto, Arnensih Alimuddin 538–546

THE AIR FLOW ANALYSIS OF COFFEE PLANTATION BASED ON CROPS PLANTING PATTERN OF THE TRIANGULAR GRID AND SHACKLE OF WHEEL GRAPH BY USING A FINITE VOLUME METHOD

ON THE DOMINATION NUMBER AND CHROMATIC NUMBER OF FLAKE GRAPH
Mohammad Nafie Jauhari 551–554

SUPER (a,d) -EDGE ANTIMAGIC TOTAL LABELING OF SNAIL GRAPH
Novian Riskiana Dewi, Dafik, Susi Setiawani 555–558

TOTAL EDGE IRREGULARITY STRENGTH OF LAMPION GRAPH
Nuris Hisan Nazula, Slamin, Dafik 559–562

SUPER (a,d)-EDGE-ANTIMAGIC TOTAL LABELING OF UFO GRAPH
Reni Umilasari, Dafik, Slamin 563–568

CHARACTERISTIC STUDIES OF SOLUTION THE MULTIPLE TRIP VEHICLE ROUTING PROBLEM (MTVRP) AND ITS APPLICATION IN OPTIMIZATION OF DISTRIBUTION PROBLEM
Sapti Wahyuningsih, Darmawan Satyananda 569–578

ONE TOUCH DRAWING FOR ANDROID-BASED GRAPH THEORY LEARNING
Sikky El Walida 579–582

VERTEX MAGIC TOTAL LABELING ON SUNS DIGRAPH
Yuni Listiana, Darmaji, Slamin 583–589
METACOGNITIVE AWARENESS ASPECTS IN SOLVING ALGEBRA

Akhsanul In’am
Mathematics Education, University of Muhammadiyah Malang
ahsanul_in@yahoo.com

Abstract

The research objective is analysing awareness aspects in solving algebra questions. The approach used in this research was descriptive quantitative and qualitative of which subject of the research was 43 students of 8th grade in SMPN 10 Malang. The instrument used to know students’ response towards the metacognitive awareness aspects consisted of five instruments. Then, the results of validity test from the ten items were namely 0.68; 0.83; 0.62; 0.67; 0.71 while the coefficient of reliability was 0.95. The results related to students’ response the metacognitive awareness aspects had mean 2.91, additionally; the results was completed by pair interview.

Keywords: Awareness, Metacognitive

INTRODUCTION

Constructivist-oriented learning has three characteristics, namely: 1) students in their learning activities; 2) new information, which is imparted, is related to previous information so that it integrates with the scheme owned by the students, in order to the understanding of information can be realized well; 3) problem solving-oriented learning (Hudoyo, 2005). Through these three aspects, students are orientated to understand math more meaningful conceptually and procedurally.

The experts who have developed constructivism are Jean Piaget and Vigotsky (Cholis, 2006; Nurdin, 2007), both emphasize that the cognitive changes may occur if the conception that has been understood and treated through a process to acquire new information (Norani, 2005; Cholis, 2006). This theory views students respectively check the new information which is not accordance with the old conception and fix it.

Learning based on the principles of constructivism is teachers not only impart the knowledge to the students, but also have an obligation to develop knowledge owned by the students (Cholis, 2006, In'am, 2010). Through this way, the implementation of learning activities, which orientates the information become very meaningful and relevant to the students to apply their ideas by themselves consciously as well as explore the best strategies for learning.

Concerning the explanation above, it can be said that the development of knowledge can be acquired through any interaction with the objects, phenomena, experiences and the environment in which they are located. The truth of knowledge is based on the benefit of searching the solution accordance with the problem (Noraini, 2005; Noorshah, 2006). Knowledge cannot be taken for granted from other people, but it should be interpreted in accordance with the prior knowledge they have. Knowledge is not gained instantly, but rather through a process that develops sustainably (Paul, 1997).

The characteristics of constructivist-based learning are: 1) learning can give meaning to the students which come from what they see, hear, feel, and experience; 2) the construction of meaning is a continuous process, in every finding a phenomenon the reconstruction is done sustainably; 3) learning is the development of thought as an effort to construct new knowledge; 4) the actual learning process occurs when a person’s scheme is in doubt which stimulates a further thought, and it can improve the quality of learning; and 5) learning outcomes are influenced by the learning experiences owned by the students and their environment (Paul, 1997). It is also said that learning is students’ activity in...
searching for the meaning from what they learn through the adjustment of concepts and new ideas with the existing framework and students’ framework (Shymansky, 1992; Nurdin, 2007).

LITERATURE REVIEW

Thinking is a process of using mind, in an attempt to find meaning and understanding something, make judgments or decisions as well as solve a problem (Noraini, 2005; Poh, 2006; Tall, 1994)), it is also said that by the formation of concepts, searching the causes or making the determination (Beyer, 1991). One of thinking knowledge, which can be used, is metacognitive treatment (Kirsh, 2004; Fortunato, 1991).

Metacognitive is thinking about thought (Flavell, 1979), is thinking how to think or learning how to learn (Blakey & Spence, 1990), and this is as a strategy to solve the problem (O’Neil & Brown, 1997). Martinez (1998) explains that in solving problems it needs to be aware of what is done, what strategies used and the effectiveness of these strategies.

According to O’Neil & Abedi (1996) metacognitive consists of four aspects, namely: 1) awareness; 2) cognitive strategies; 3) planning; and 4) self-monitoring, and in this research one metacognitive aspect, which is awareness aspect is studied. A person who is carrying out the activity will work properly if he understands and acknowledges the awareness of himself and a series of activities to be carried out. Awareness as one of the metacognitive aspects is an aspect related to awareness of thinking what he does, including the strategies used in thinking (Fernandez, 2000; Jeni, 2004). Next, realizing the process of thinking occurs to devise the actions to be performed in order to be able to understand the problems faced.

METHOD

The approach used in this research was descriptive quantitave and qualitative. The subject in this research was 8th grade students of SMP 10 Malang amounted 43 students. Data were collected through the instrument consisting of five items of metacognitive awareness aspects. The instrument used firstly tested for validity and reliability in 8th grade towards the students who were not the subject of the research. The results of instrument validity were 0.68; 0.83; 0.62; 0.67; 0.7, while the reliability has coefficient of 0.95.

Data analysis was conducted by describing data collected with the frequencies, the means and the percentages for each scoring then described the overall mean. To complete the results of the quantitative analysis, it was presented that the results of interviews acquired through pair interviews by taking 6 students which were classified into three groups; one group of those who had good ability, another group of those who had fair ability and one more group including those who had deficient ability.

RESULT

Based on the collected data, students' response towards the metacognitive awareness aspects could be classified into two, namely the students who realized about themselves related to the problems faced consisting of based on a good response and an excellent one, and a group of students who were less aware of themselves related to their problems consisting of based on a simple response and a weak one.

The mean of the lowest response is 2.72, at the items about the awareness of the way of thinking, and in this instrument item, the awareness showed the lowest response compared with other items. This statement has the majority of responses at the ‘good’ category, with the frequency and the percentage of 25 (58.14%), while for the simple category had the frequency and the percentage of 12 (27.91%). This means that the items related to students’ awareness about the way students think categorized as good, though the mean based on this item is at 2.72.

Next is students’ awareness to understand the problem before attempting to solve it, with the mean score is 2.88. This response mostly is categorized into good,
with the frequency and percentage of 16 (37.21%). Meanwhile, for the simple category is 13 (30.23%), and it is greater compared to excellent category that has the frequency and the percentage of 12 (27.91%). This situation shows that students’ awareness in understanding the problem before attempting to solve the problems tend to the intermediate category, which is between good and simple category. Nevertheless, based on metacognitive category, this item is categorized as good.

Regarding the students’ awareness before using their mind to solve the problems and the awareness for devising the action before trying to solve the problems have the same mean, which are 2.95. These both items mostly included into good category with the mean of the frequency and the percentage of both are 21 (48.83%). Meanwhile, simple and good categories of which frequencies are almost the same, and the mean based on both categories is 10.5 with the percentage of 24.42%. Like other items, the mean of both items provide the information that these items are categorized as good.

In general, students realized in understanding and solving problems, it is shown by the mean of the frequency and the percentage is 30.4 (70.70%), and only 12.6 (29.30%) students are less aware of the problems to be solved. By researching the mean of the highest response of 3.05 and the lowest one of 2.72 and the mean of overall response of 2.91 as well as based on the category of metacognitive treatment, it can be said that the mean of related response included into good category. This means that students generally realize their way of thinking in solving problems.

The results stated above are complemented by interviews with the students, which provided the information that the awareness aspect in solving algebra problems have been owned by the students; either those categorized as good or fair. As indicated in the conversation stated in the transcript, students said about the steps undertaken, they were “...Find the sides which are not given, let’s say y and another one is z” (P1/T1/21-22). It shows that the students realize the way to find the components which are not given, i.e. by giving the variables y and z.

Besides, the students also said that to solve the first problem, it was said “...Find the value of z, ... equal to (x +4) subtracted (x +1) equal to x subtracted x added 4 subtracted 1 equal to 3 ... now we find the perimeters, ... (2x +3) added (x +1) added (x +4) added (x +1) added 3 added (x + 2) (together with another student)” (P1/T1/32-38).

Based on the transcript of related interviews, the acquired information is that the students had awareness of how they want to seek the perimeters of given 2D shape. Students understood, that the perimeters based on given 2D shape was acquired through the sum based on the sides which form the 2D shape of which the perimeters to be found. Besides, the acquired information is that students in solving the questions using the procedure of forward thinking, which was problem-solving based on what was given, then, thinking various ways to reach what was asked, even by attempting. Some steps are: a) identifying what is given and what is asked in question; b) thinking of a formula or a way that may relate to what is given and asked; and c) selecting a formula or a memorable way to resolve the problem.

Similarly, the transcript of the interview from another group of students said that “The sides which do not have variables let’s say a and another one is b” (P2/T2/22). The graphs of which the perimeters and the areas to be found, actually there are two sides are not given, but can be acquired by performing subtraction operation on the given sides, so that all sides have length in x.

Based on the transcript of related interview, the acquired information is that the students’ activities in solving problems using deductive thinking procedure, which is the problem solving begins based on something common to gain something special. Some steps are carried out: a) identifying something given and asked in the question; b) selecting the formula, characteristics, or requirements based on a principle which associates something given
with something questioned; c) the substitution of something given into the formula to acquire the answers from what is questioned.

Based on interviews with the students, it was said that “the sides which are not given called y and z, where y is equal to 2x +3 subtracted x +1 while z is equal to x +4 subtracted x +1” (P1/T1/23-25). This situation showed that the students are aware what should be done before solving the problem which finds the perimeters based on the related graph.

The steps should be taken to acquire the perimeters and the areas of related 2D shape. It is necessary to search two sides which are not given yet, as what students said “... the sides which do not have variables let’s say y and another one is z” (P1/T1/21-22). Next, the steps should be done to acquire the perimeters and the areas of related 2D shape, “now we are looking for the perimeters, ... (2x +3) added (x +1) added (x +4) added (x +1) added 3 added (x +2)” (P1/T1/35-38). The results acquired perpetuate that the students are aware of the necessity to devise actions to be done and also know what would be done and devise it before accomplishing the solution of question.

However, for the students categorized as simple ability, their awareness aspects based on metacognitive had less understanding in problem solving. This situation is as shown in the results based on interview “...yeaah ... x +1 added 2x +3 added x+4 added x +1 ... added ... how is it ... can be ... divided by 2 ... ehhh ... 2x +3 subtracted x +1 ... let’s say y for this one and z for another one ..” (P6/T6/22-26). Similarly, for the group of students included in weak category, it was found that the results of interview “...it means x +1 added 2x+3 added x+4 added x +1 ... added ... lho how is it ... like this...divided two...no it’s not.... 2x+3 subtracted x +1 ... just call these y and z ..” (P6/T6/23-28).

Based on the findings, the acquired information is that the respondents is fooled for a moment by the graph seen, they presumes that the side which is not given can be found by dividing the two sides given. However, it does not take a long time that they are aware that previous statement is wrong. Furthermore, they said that the side, which was not given can be found by subtracting the sides given like in the transcript of related interview. This situation shows that the students in the deficient group also have awareness of how to think and search the solution of question, but their awareness is rather late.

DISCUSSION

The results show that students' metacognitive awareness aspects in solving the problem can be classified into two groups. First, good and fair groups have awareness before accomplishing algebra problems. This condition is relevant to the results of research conducted by Noorshah (2004) concerning the metacognitive treatment in solving the problem of sum. The study of metacognitive awareness aspects also studied in depth (Fernadesz, 2000) and the results are also relevant to the results of this research.

CONCLUSION

Students categorized into good and fair groups have awareness before solving the problems. It is seen from the mean of their responses is included into good category. This situation is enforced by the results of pair interview conducted in solving algebra problems. Meanwhile, the students categorized deficient, their metacognitive awareness aspects can be said rather lacking, but it does not take a long time for them to be able to realize the mistakes, that the previous statement is wrong and immediately can notice it.

REFERENCES

Cholis, S. 2006. Pengembangan Model Pembelajaran Matematika Beracuan Konstruktivisme untuk Siswa SMP. Disertasi S-3 tidak dipublikasikan, Universitas Negeri Surabaya

Martinez 1998. What is problem solving? Phi Delta Kappa, 605-609

Nurdin 2007. Model Pembelajaran Matematika untuk Menumbuhkan Kemampuan Meta-kognitif Disertasi S-3 tidak dipublikasikan, Universitas Negeri Surabaya

Shymansky. 1992. Using Constructivist Ideas to Teach Science Teachers about Constructivist Ideas, or Teachers are Studets Too!, Journal of Science Teacher Education, 3(2), 53-57
