Integrated Frequency Control of Microhydro Power Plant Based Flow Valve Control and Electronic Load Controller

Has, Zulfatman and Rosyidi, Alwan Zanuar and pakaya, ilham and mardiyah, nur alif and nurhadi, nurhadi and Effendy, Machmud (2018) Integrated Frequency Control of Microhydro Power Plant Based Flow Valve Control and Electronic Load Controller. In: IEEE Conference on Systems, Process and Control (ICSPC). IEEE, Melaka, Malaysia, pp. 244-249. ISBN 978-1-5386-6327-1

[thumbnail of Has Rosyidi Pakaya Mardiyah Nurhadi Effendy - microhydro synchronous generator frequency governor electronic load controller load changes.pdf]
Preview
Text
Has Rosyidi Pakaya Mardiyah Nurhadi Effendy - microhydro synchronous generator frequency governor electronic load controller load changes.pdf

Download (1MB) | Preview
[thumbnail of Similarity - Has Rosyidi Pakaya Mardiyah Nurhadi Effendy - microhydro synchronous generator frequency governor electronic load controller load changes.pdf]
Preview
Text
Similarity - Has Rosyidi Pakaya Mardiyah Nurhadi Effendy - microhydro synchronous generator frequency governor electronic load controller load changes.pdf

Download (4MB) | Preview

Abstract

Frequency instability is one of the main problems in generating Micro-hydro Power Plant (MHPP) with synchronous generator. Governor control using Flow Valve Control (FVC) and Electronic Load Control (ELC) are the common methods that have been applied for MHPP frequency control. However, slow time response and relatively high total harmonic distortion (THD) problems are still exist in the system output when the load vary significantly. FVC is very slow in time response, but produce low THD. In the contrary, ELC very fast in response, but results relatively high THD. This study proposes control techniques for FVC and ELC in order to improve time response and to result a lower THD level. FCV is controlled by Fuzzy-Proportional Integral (Fuzzy-PI) controller to improve the time response, while ELC is improved by Adaptive Neuro Fuzzy Inference System-Proportional Integral Differentia (ANFIS-PID) controller to reduce the load variation effect on THD level. The ELC circuit employs 3 phase rectifier circuit. The ELC circuit is driving current through load bus to load ballast. These integrated controller is simulated by using Matlab Simulink. Results of simulation indicate that by deploying the proposed controller on the FVC and the ELC, respectively and by integrating them all together, the time response and the THD of the MHPP output are improved in the load changes.

Item Type: Book Section / Proceedings
Keywords: microhydro, synchronous generator, frequency, governor, electronic load controller, load changes
Subjects: T Technology > T Technology (General)
T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions: Faculty of Engineering > Department of Electrical Engineering (20201)
Depositing User: maulana Maulana Chairudin
Date Deposited: 22 Mar 2024 02:38
Last Modified: 22 Mar 2024 02:38
URI: https://eprints.umm.ac.id/id/eprint/5030

Actions (login required)

View Item
View Item