Multimachine Power System Stabilizer based on Optimal Fuzzy PID with Genetic Algorithm Tuning

E. A. Hakim¹,², A. Soeprijanto¹ and M. HP¹
1. Electrical Sepuluh Nopember Institute of Technology, Surabaya 60111, Indonesia
2. Electrical Malang Muhammadiyah University, Malang 65142, Indonesia

Received: October 31, 2009 / Accepted: December 02, 2009 / Published: January 30, 2010.

Abstract: This paper presented PSS (Power system stabilizer) design based on Genetic Algorithm - Fuzzy PID (Proportional Integral and derivative) or GAFPID. GAFPID based PSS design is considered for multimachine power system. The main motivation for this design is to stabilize or to control low-frequency oscillation and terminal voltage of power systems. Genetic Algorithm (GA) is employed for the optimization of the parameter of stabilizer. By minimizing an objective function in which the oscillatory speed deviation of the generator, small signal and large signal performance of the system is improved. The effectiveness of the proposed PSS in increasing the damping of system electromechanical oscillation is demonstrated in a simple two-area power system.

Key words: Fuzzy PID, genetic algorithm, power system stabilizer.

1. Introduction

Low-frequency oscillations are a common problem in large power systems. PSS (power system stabilizer) is one of the alternative solutions. PSS can provide auxiliary control signal to the excitation system and/or the speed governor system of the electric generating unit. This can also damp oscillation and improve its dynamic performance.

Most PSSs employ the classical linear control theory. PSS design approach is based on a linear model in fixed configuration of the power system. This results in fixed-parameter of PSS. It is called a conventional PSS (CPSS) and widely used in power systems to damp out small oscillations [1-4].

Power system stabilizers based on adaptive control, artificial neural networks, and fuzzy logic are being developed. Each of these control techniques possesses unique feature and strength. Fuzzy logic-based PSS shows great potential in increasing the damping of generator oscillations, especially when made adaptive [5-7].

In the past some researchers have taken initiatives to investigate the design fuzzy PID [8-9]. Different approaches have been proposed to design of fuzzy PID [10-13]. The main problem of optimal fuzzy PID stabilizer design is the tuning of fuzzy PID parameters. The tuning of a fuzzy PID for improved system dynamic like power system is complex task as compared with the tuning procedures of conventional stabilizer [14].

In this papers, an optimal fuzzy PID stabilizer is developed, which uses the post-disturbance value of the speed deviation as the input. Then this signal is used as the input of fuzzy PID stabilizer. To reach optimal speed deviation, the fuzzy PID stabilizer is tuned by GA.

2. Fuzzy PID Stabilizer

The basic principles underlying the design of the proposed fuzzy PID stabilizer can be illustrated by the block diagram in Fig.1, in which a synchronous gener-
Fig. 1 Structure of the study system.

ator i with a static exciter is equipped with a fuzzy PID controller whose gain settings are tuned by PSO. The generator speed deviation \(\Delta \omega \) is as the input signal of the proposed stabilizer.

In this section, first we briefly describe the mathematical principle for the fuzzy PID stabilizer design, including the fuzzification, rule-base and defuzzification. Then fuzzy PID stabilizer is developed. The fuzzy PID stabilizer is normally a fuzzy PID controller with different input. Details in the design of the fuzzy PID controller can be found in Malki et al. [8, 9], Tang et al. [12] and Lu et al [13].

The general continuous-time PID stabilizer or PID controller has the expression

\[
\int_{\text{f}} \Delta + \Delta + \Delta = K_P \Delta \omega + K_I \int \Delta \omega \Delta t + K_D \frac{d\Delta \omega}{dt}
\]

(1)

Where \(\Delta \omega \) is speed deviation of machine and \(K_P, K_I \), and \(K_D \) are PID controller parameters.

This is first converted into the frequency domain to get

\[
u_{\text{f}}(s) = (K_P + \frac{K_I}{s} + sK_D)\Delta \omega(s)
\]

(2)

2.1. Derivation of the Fuzzy PD Stabilizer

The output of the conventional analog PD stabilizer in the frequency-domain is given by

\[
u_{\text{f}}(s) = (K_P + K_D \frac{1}{2T} + \frac{1}{2+1\Delta z})\Delta \omega(s)
\]

(3)

Where \(K_P^c \) and \(K_D^c \) are the conventional proportional and derivative gains, respectively, and \(\Delta \omega(s) \) is the speed deviation signal. This equation can be transformed into the discrete version by applying the bilinear transformation

\[
s = \frac{z - 1}{T z + 1}
\]

Where is \(T \) the sampling period, which results in

\[
u_{\text{f}}(z) = (K_P + K_D \frac{T}{2} \frac{1 - z^{-1}}{1 + z^{-1}})\Delta \omega(z)
\]

(4)

Letting \(K_P = K_P^c \) and \(K_D = 2K_D^c / T \), and then taking the inverse z-transform, we have

\[
u_{\text{f}}(nT) + u_{\text{f}}(nT - T) = K_P[\Delta \omega(nT) + \Delta \omega(nT - T)] + K_D[\Delta \omega(nT) - \Delta \omega(nT - T)]
\]

(5)

Further dividing Eq. (1) by \(T \), and using to mean from now on Eq. (4), we obtain

\[
u_{\text{f}}(nT) = K_P d(n) + K_P r(n)
\]

(6)

Where

\[
u_{\text{f}}(nT) = \frac{u_{\text{f}}(nT - T)}{T}
\]

\[
r(n) = \frac{\Delta \omega(nT) - \Delta \omega(nT - T)}{T}
\]

\[
d(n) = \frac{\Delta \omega(nT) + \Delta \omega(nT - T)}{T}
\]

We can then rewrite (3) as

\[
u_{\text{f}}(nT) = u_{\text{f}}(nT - 1) + T \Delta \omega(nT)
\]

(7)

Replacing the term \(T \Delta \omega(nT) \) by a fuzzy control action gain, we finally arrive at

\[
u_{\text{f}}(nT) = -u_{\text{f}}(nT - 1) + K_{\text{apd}} \Delta u_{\text{f}}(nT)
\]

(8)

Where \(K_{\text{apd}} \) is a fuzzy PD control gain.

2.2 Derivation of the Fuzzy I Stabilizer

The output of the conventional analog I stabilizer in the frequency-domain is given by

\[
u_{\text{f}}(s) = \frac{K_I}{s} \Delta \omega(s)
\]

(9)

Where \(K_I^c \) is the conventional integral control gain. Under the bilinear transformation, (9) becomes

\[
u_{\text{f}}(z) = \frac{T}{2} \frac{1 - z^{-1}}{1 + z^{-1}} K_I^c \Delta \omega(z)
\]

(10)
So
\[u_{EI}(z) = K_i \frac{T}{2} \left(1 + \frac{2 z^{-1}}{1 - z^{-1}} \right) \Delta \omega(z) \] (11)

Then
\[u_{EI}(n) - u_{EI}(n-1) = \frac{K_i T}{2} [\Delta \omega(n) - \Delta \omega(n-1)] + \frac{K_i T \Delta \omega(n-1)}{2} \]
\[\Delta u_{EI}(n) = K_i \Delta \omega(n-1) + Kr(n) \] (12)

Where \(K_i = K_i^c \) and \(K = (T/2) K_i^c \), with
\[\Delta u_I(n) = \frac{u_I(n) - u_I(n-1)}{T} \]
and
\[r(n) = \frac{\Delta \omega(n) - \Delta \omega(n-1)}{T} \]

Letting \(K_{al} \) be a fuzzy control gain, as was similarly done for the fuzzy PD controller case discussed above, we arrive at
\[u_{EI}(n) = u_{EI}(n-1) + K_{al} \Delta u_{EI}(n) \] (14)

2.3 Combination of the Fuzzy PD+I stabilizer

Finally, the overall fuzzy PD+I control law can be obtained by algebraically summing the fuzzy PD control law Eq. (7) and fuzzy I control law Eq. (14) together. The result is
\[u_{EPI}(n) = u_{EPI}(n-1) + u_{EI}(n) \]
\[= -u_{EPI}(n-1) + K_{al} \Delta u_{EPI}(n) + u_{EI}(n-1) + K_{al} \Delta u_{EI}(n) \] (15)

The overall fuzzy PID stabilizer is shown in Fig. 2, where the fuzzy PD and I stabilizers will be inserted into the configuration.

\[J = \sum_{i=1}^{N} \int_{t_i}^{t_{i+1}} \left| \Delta \omega_i - \Delta \omega_i \right| dt \] (16)
Where $\Delta \omega_i = \text{speed deviation of machine } I; \Delta \omega_f = \text{speed deviation of machine } 1^{st}$

3.1 General Structure of GA

The sequential steps for searching optimal solution of Fuzzy PID based PSS parameters using GA is shown in Fig. 5.

Design Methodology

(1) An initial population of individuals is randomly generated.

(2) The optimization of Fuzzy PID based PSS parameters are done by evaluating performance index J.

(3) If the value of J obtained is minimum, then the optimum value of PSS parameters equal to those obtained in the current generation, otherwise go to step 4.

(4) Based on the fitness, some individuals will be selected to populate the next generation.

The selection is based on stochastic universal sampling method. Selected individuals will be then recombined through a crossover process by exchanging genetic information between the pairs of the individuals contained in the current population.

After that, each individual in the population will be mutated with a given probability, through a random process of replacing one allele with another to produce a new genetic structure.

The GA stops when a pre-defined maximum number of generations are achieved. The GA also stops when the value returned by the objective function, being below a threshold, remains constant for a number of iterations.

The GA parameters used in this study are shown in Table 1.

Table 1 MATLAB GA toolbox options.

<table>
<thead>
<tr>
<th>PopulationSize</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>EliteCount</td>
<td>2</td>
</tr>
<tr>
<td>CrossoverFraction</td>
<td>0.9</td>
</tr>
<tr>
<td>MigrationInterval</td>
<td>20</td>
</tr>
<tr>
<td>MigrationFraction</td>
<td>0.2</td>
</tr>
<tr>
<td>Generation</td>
<td>100</td>
</tr>
<tr>
<td>StallGenLimit</td>
<td>50</td>
</tr>
<tr>
<td>StallTimeLimit</td>
<td>Inf</td>
</tr>
<tr>
<td>InitialPenalty</td>
<td>10</td>
</tr>
<tr>
<td>PenaltyFactor</td>
<td>100</td>
</tr>
<tr>
<td>Initial range</td>
<td>[-5;5]</td>
</tr>
</tbody>
</table>

4. Results and Discussion

To evaluate the effectiveness of the proposed stabilizer to improve the stability of power system, a simple two-area power system is studied [1]. Fig. 6 shows a simple two-area system. The nominal operating conditions and system parameters are given in Appendix [1]. A multimachine power system with synchronous generator provided with excitation system and governor system is considered. The power system dynamic performance of the proposed stabilizer was examined under small signal perturbation and large signal perturbation. The performance of the GAFPID based PSS is compared with three PSS that are the same setting for all machines. Three PSS are multiband PSS and the two conventional PSS whose parameters were optimized using phase compensation technique, i.e., w delta PSS and Pa delta PSS [1].
Without power system stabilizer, the system damping is poor and the system exhibits highly oscillatory response [1-4]. It is therefore necessary to install PSS to improve the dynamic performance.

A small perturbation 12-cycle pulse of 5% magnitude at the voltage reference of machine 1 and a large perturbation 8-cycles, three-phase fault with line outage are applied at nominal operating condition. The dynamic responses of machine all PSS are compared.

The convergence rate of the fitness value J is shown in Fig. 7. The following solution with Genetic Algorithm fuzzy PID based PSS (GAFPID PSS) with minimum index performance is selected for the control purpose that is shown in Table 2.

4.1 Small Signal Perturbation Test

![Diagram of a simple two-area system](image)

Fig. 6 A simple two-area system.

Table 2 Optimization results.

<table>
<thead>
<tr>
<th>L</th>
<th>Kp</th>
<th>Ki</th>
<th>Kd</th>
<th>Kupi</th>
<th>Kudi</th>
<th>T (fixed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9</td>
<td>0.3217</td>
<td>0.3957</td>
<td>-2.8062</td>
<td>3.7388</td>
<td>-2.2205</td>
<td>0.1</td>
</tr>
</tbody>
</table>

![Graph of variation of fitness value J](image)

Fig. 7 Variation of the fitness value J.

![Dynamic response for Δω2l for small perturbation with nominal load](image)

Fig. 8 Dynamic response for Δω2l for small perturbation with nominal load.

![Graph of 12-cycle pulse of 5% magnitude on the voltage reference of M1](image)

Fig. 9 Dynamic response for Δω3l for small perturbation with nominal load.
A small perturbation 12-cycle pulse of 5% magnitude at the voltage reference of machine 1 was applied at nominal loading condition. The dynamic responses of GAFPID-PSS are compared with the three PSS. Figs. 8-10 show that the GAFPID-PSS stabilizer has lower peak over-shoots and damps out low frequency oscillations very quickly as compare to other PSS.

4.2 Large Signal Perturbation Test

A large perturbation 8-cycles, three-phase fault with line outage are applied at nominal operating condi-
Fig. 16 Dynamic response for $\Delta \omega_{43}$ for large perturbation with nominal load.

Response to a three-phase fault for nominal loading condition are shown in Figs. 12 - 15. All figures show that the GAFPID-PSS has lower peak overshoots and damps out low frequency oscillations very quickly as compare to other PSS.

5. Conclusions

In this paper, a new technique the stabilization of power system and a different approach for designing a power system stabilizer are presented by using a GAFPID stabilizer. GA has been employed to perform the function of a GAFPID based PSS to improve the stability and dynamic performance of the power system. Computer simulation studies described in the paper show that the performance of the GAFPID based PSS can provide very good performance.

Acknowledgments

The authors gratefully acknowledge the contributions of Tang etc, Jaco F. Shutte and Kundur for their work on the original version of this document.

References

[1] P. Kundur, Power System Stability and Control,

Nominal System Parameters
The nominal parameters and operating conditions of the system are given below. All data are in per unit, except that H and the time constants are in seconds.

The system consists of two similar areas connected by a weak tie. Each area consists of two coupled units, each having a rating of 900 MVA and 20 kV. The generator parameters in per unit pu the rated MVA and kV base are as follows:

\[
X_d = 1.8, \quad X_q = 1.7, \quad X_l = 0.2, \quad X_d' = 0.3, \quad X_q' = 0.55, \\
X_d'' = 0.25, \quad X_q'' = 0.25, \quad R_a = 0.0025, \quad T_{d0} = 8.0 \text{ s}, \\
T_{q0} = 0.4 \text{ s}, \quad T_{d0} = 0.03 \text{ s}, \quad T_{q0} = 0.05 \text{ s}, \quad A_{sat} = 0.015
\]

\[B_{sat} = 9.6, \quad \psi_{10} = 0.9; \quad H = 6.5 \text{ (for G1 and G2); } H = 6.175 \text{ (for G3 and G4); } D = 0\]

Each step-up transformer has an impedance of 0 + j0.15 per unit on 900 MVA and 20/230 kV base, and has an off-nominal ratio of 1.0.