STATE LARAN DANIER

PROSIDING SEMINAR NASIONAL III TAHUN 2017

"Biologi, Pembelajaran, dan Lingkungan Hidup Perspektif Interdisipliner" Diselenggarakan oleh Prodi Pendidikan Biologi-FKIP bekerjasama dengan Pusat Studi Lingkungan dan Kependudukan (PSLK) Universitas Muhammadiyah Malang, tanggal 29 April 2017

ANALISIS KADAR KLOROFIL PADA POHON ANGSANA (Pterocarpus indicus Willd.) DI KAWASAN NGORO INDUSTRI PERSADA (NIP) NGORO MOJOKERTO SEBAGAI SUMBER BELAJAR BIOLOGI

An Analysis on the Levels of Chlorophyll on Angsana Trees (Pterocarpus indicus Willd) at Ngoro Industry Persada (NIP), Ngoro Mojokerto as a Resource of Biological Study

Dian Rizkiaditama¹, Elly Purwanti², Muizzudin³

¹Mahasiswa Universitas Muhammdiyah Malang ^{2,3}Dosen Program Studi Pendidikan Biologi Universitas Muhamadiyah Malang Jl. Raya Tlogomas No. 246 Malang e-mail korespondensi: rizki.aditama08@gmail.com

ABSTRAK

Seiring meningkatnya Industri, maka mengindikasikan bahwa kualitas udara di daerah tersebut menurun karena masuknya polutan ke dalam udara. Udara yang tercemar dapat merusak lingkungan dan kehidupan manusia. Salah satu bioidikator pencemaran udara adalah pohon Angsana (*Pterocarpus indicus* Willd.). Pohon angsana sebagai salah satu pohon yang memiliki kepekaan terhadap pencemaran udara terutama di bagian organ daun. Pengaruh pencemaran udara pada daun dapat dilihat dari kerusakan secara makroskopis seperti klorosis dan nekrosis atau secara mikroskopis seperti perubahan jumlah kadar klorofil. Penelitian ini berutujuan untuk mengetahui perbandingan kadar klorofil pada masing-masing stasiun, mengetahui hubungan kerapatan industri dengan kadar klorofil, nekrosis, klorosis, dan memberikan inovasi sumber belajar biologi. Metode pengambilan sample menggunakan purposive sampling. Sampel dianalisis menggunakan metode spektrofotometri uv-vis 1800. Hasil penelitian menunjukkan bahwa rata-rata kadar klorofil bervariasi. Kadar klorofil a dan klorofil b tertinggi pada selatan Blok H₂ sebesar 17,454 mg/g, dan 7,454 mg/g, kadar klorofil a dan b terendah pada jalan Blok G dan N sebesar 6,859 mg/g dan 2,610 mg/g. Kerapatan industri mempunyai hubungan berbanding terbalik dengan kadar klorofil, semakin banyak industri maka semakin sedikit kadar klorofil, dan kerusakan daun yang terkena pencemaran udara mengalami gejala klorosis dan nekrosis.

Kata kunci: Angsana (Pterocarpus indicus Willd.), Klorofil, Klorosis, Nekrosis

ABSTRACK

Along with increasing of industry, the air quality in the area is decreased due to the contamination of pollutants into the air. The contamined air could damage the environment and human life. One bio-indicator of air pollution is Angsana (Pterocarpus indicus Willd). Angsana tree is one of the trees which are sensitive to air pollution, especially in the leaf areas. The effect of air pollution on the leaves can be seen from macroscopically damage such as chlorosis and necrosis or microscopically on the changing of the amount of chlorophyll. The objectives of this research are to find out the comparison of chlorophyll levels in each location, to find out the correlation between industry density with chlorophyll content, necrosis, chlorosis, and to provide an innovation of the source of biological study. The sampling method used in this research is purposive sampling. The samples are analyzed using uv-vis spectrophotometry 1800. The results showed that the average concentration of chlorophyll is varies. The highest levels of a chlorophyll and b chlorophyll are in the south of block H_2 in the amount of 17,454 mg/g, and 7,454 mg/g, while the lowest levels of a chlorophyll and b chlorophyll are in the street of block G and G in the amount of 6,859 mg/g dan 2,610 mg/g. The industrial density has an inverse correlation with the chlorophyll content. The more industries will affect on decreasing of chlorophyll contents, and the damaged leaves as a result of air pollution will experienced the symptoms of chlorosis and necrosis.

Keywords: Angsana (Pterocarpus indicus Willd.), Chlorophyll, Chlorosis, Necrosis

Beberapa daerah di Jawa Timur yang mengalami perkembangan yang pesat dari sektor industri salah satunya di Kecamatan Ngoro. Jumlah perusahaan industri pengolahan di Kecamatan Ngoro pada tahun 2015 sebanyak 734 perusahaan. Industri berskala besar ada 132 perusahaan (18,25%), Kemudian yang berskala sedang ada 37 perusahaan (5,65%). Untuk industri berskala kecil ada 144 perusahaan (22,78%), dan sisanya berskala kerajinan rumah tangga ada 421 perusahaan (53,32%). Untuk industri sedang berada di 16 desa. Semua desa di Kecamatan Ngoro terdapat industri, dan yang terbanyak berada di Desa Ngoro yang merupakan Kawasan Ngoro

Industri Persada (NIP), dimana perusahaan mencapai 87 industri (BPS Kabupaten Mojokerto, 2016).

Menurut Siregar (2005), seiring meningkatnya Industri maka mengindikasikan udara di daerah tersebut menurun karena masuknnya polutan ke dalam udara, sehingga menyebabkan udara menjadi berkurang atau tidak dapat berfungsi lagi sesuai dengan semestinya. Kerusakan lingkungan berarti berkurangnnya daya dukung alam terhadap kehidupan yang dapat mengurangi kualitas hidup manusia secara keseluruhan.

Salah satu cara pemantauan pencemaran udara adalah dengan menggunakan tumbuhan sebagai

A STORAGE WAS ONLY WITH THE PARTY OF THE PAR

PROSIDING SEMINAR NASIONAL III TAHUN 2017

"Biologi, Pembelajaran, dan Lingkungan Hidup Perspektif Interdisipliner" Diselenggarakan oleh Prodi Pendidikan Biologi-FKIP bekerjasama dengan Pusat Studi Lingkungan dan Kependudukan (PSLK) Universitas Muhammadiyah Malang, tanggal 29 April 2017

bioindikator. Di kawasan Ngoro Industri Persada (NIP) banyak tanami pohon peneduh jalan, salah satunya pohon angsana (*Pterocarpus indicus* Willd.). Pohon angsana sebagai salah satu pohon yang memiliki kepekaan terhadap pencemaran udara terutama di bagain organ daun (Roziaty, 2009). Daun merupakan salah satu organ tumbuhan yang paling dominan jumlahnya dalam satu tanaman dan paling peka terhadap pencemar. Karliansyah (1999) dalam penelitiannya menambahkan bahwa pengaruh pencemaran udara pada daun dapat dilihat dari kerusakan secara makroskopis seperti klorosis, nekrosis atau secara mirkorskopis seperti struktur sel atau perubahan secara fisiologi dan kimia seperti perubahan klorofil dan metabolisme.

Tanaman mampu mengabsorbsi beberapa jenis polutan dengan efektif, sehingga dapat berperan dalam membersihkan udara dari polusi. Polutan terabsorbsi terikut dalam proses metabolisme. Sehingga keefektivan tanaman dalam menyerap polutan akan semakin berkurang dengan peningkatan konsentrasi polutan. Polutan yang terserap oleh daun melalui stomata secara bertahap akan menyebabkan kerusakan salah satunya pada kondisi helaian daun, laju fotosintesis terhambat, luas daun menyusut, penurunan kadar klorofil dan kematian pada daun (Warsita, 1995).

Klorofil sangat sensitif dan mudah terpengaruh pada saat terpapar oleh polutan daslam waktu tertentu pada kadar tertentu (Satolom, 2013). Sastrawijaya (2000), dalam bukunya juga menyatakan bahwa klorofil akan menurun kadarnya sejalan denan peningkatan pencemaran udara.

Hasil penelitian ini dapat digunakan sebagai referensi tambahan yaitu berupa sumber belajar biologi SMA kelas X semester II pada Bab perubahan lingkungan atau pencemaran lingkungan, KD. 3.10 menganalisis data perubahan lingkungan dan dampak dari perubahan tersebut bagi kehidupan.

Berdasarkan permasalahan di atas maka dapat dirumuskan masalah yaitu, bagaimanakah kadar klorofil pohon Angsana (*Pterocarpus indicus* Willd.) pada masing-masing stasiun, bagaimana hubungan kerapatan industri di kawasan Ngoro Industri Persada (NIP) terhadap kadar klorofil, klorosis dan nekrosis pohon Angsana, bagaimanakah bentuk draft sumber belajar biologi yang akan dikembangkan dalam bentuk Hand Out?

Penelitian ini bertujuan untuk mengetahui kadar klorofil pohon Angsana di masing-masing stasiun, mendeskripsikan hubungan kerapatan industri di kawasan Ngoro Industri Persada (NIP) terhadap kadar klorofil, klorosis dan nekrosis pada pohon Angsana, dan memberikan inovasi sumber belajar biologi.

METODE

Tempat dan Waktu Penelitian

Penelitian ini dilaksanakan di kawasan Ngoro Industri Persada (NIP) yang berstasiun di Desa Ngoro Kec. Ngoro Kab. Mojokerto. Uji kadar klorofil, klorosis dan nekrosis di lakukan di Laboratorium Biologi UMM. Penelitian ini dilaksanakan pada bulan Maret 2017.

Alat dan Bahan

Alat yang digunakan dalam penelitian ini yaitu, pisau, gunting, plastik tutup, pinset, mortal, martil, tabung reaksi, rak tabung reaksi, corong kaca, kertas saring, kertas label, gelas ukur, timbangan analitik dan spektrofotometer uv-vis 1800. Bahan yang dibutuhkan yaitu Aseton 85%, aquades dan daun Angsana.

Teknik Pengambilan Sample

Penelitian ini menggunakan teknik *purposive sampling*, pengambilan sample daun Angsana berada di kawasan Ngoro Industri Persada (NIP), daun terdapat pada urutan nomor 5 kebawah (daun tua), berada di ketinggian ± 5 m dari permukaan tanah, tidak ternaungi dan dari percabangan yang menghadap ke arah Industri.

Pengambilan sample daun tersebar di 6 stasiun dengan 4 kali pengulangan, yaitu jalan blok B₂₋₁ (zona sold area dan zona facilities, green area, open space), persimpangan jalan blok K dan V (zona sold area dan zona facilities, green area, open space), jalan blok G dan N (zona bonded zone dan zona sold area), jalan blok P (zona sold area), jalan blok E₂ (zona sold area dan zona avaiable area), dan selatan blok H₂ (zona facilities, green area, open space), jarak antar stasiun 1 km.

Prosedur Penelitian

Prosedur penelitian ini dibagi menjadi 3 tahapan yaitu tahap persiapan, tahap pelaksanaan dan tahap pengambilan data. Tahap persiapan ini merupakan tahap persiapan alat dan bahan yang dibutuhkan untuk penelitian. Tahap pelaksanaan, data tentang daun Angsana di kawasan Ngoro Industri Persada (NIP) yang tersebar di 6 stasiun sepanjang 5 km. Data diperoleh dengan cara pengidentifikasian secara langsung. Tahap pengambilan data, sample daun yang di petik dimasukkan ke dalam plastik tutup kemudian di masukkan ke dalam ice box. Sample daun di identifikasi gejala klorosis dan nekrosis, membuat persentase kerusakan daun berupa gejala klorosis dan nekrosis. Tahap pengambilan data, sample daun di ambil pada urutan nomor 5 ke bawah (daun tua). Menimbang sebanyak 0,1 mg, menumbuk daun Angsana dengan menambahkan pelarut Aceton 85% sebanyak 10 ml dengan perbandingan berat sampel dan aceton adalah 1:100 (Setiari, 2009). Menyaring hasil tumbukan menggunakan kertas saring, kemudian di ukur dengan spekrtofotometer uv-vis 1800 dengan λ 645 nm dan λ 663

Menurut Suyitno (2010) untuk perhitungan kadar klorofil dihitung dengan rumus sebagai berikut:

Klorofil a = 13,7 D-663 – 5,76 D-645 Klorofil b = 22,9 D-645 – 4,68 D-663

Parameter yang di ukur adalah kadar klorofil a dan klorofil b serta gejala yang tampak berupa klorosis dan

"Biologi, Pembelajaran, dan Lingkungan Hidup Perspektif Interdisipliner"
Diselenggarakan oleh Prodi Pendidikan Biologi-FKIP bekerjasama dengan
Pusat Studi Lingkungan dan Kependudukan (PSLK)
Universitas Muhammadiyah Malang, tanggal 29 April 2017

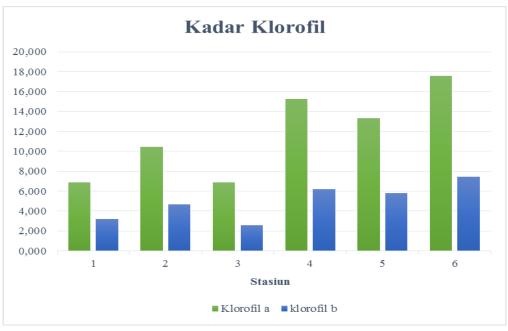
nekrosis pada daun Angsana di kawasan Ngoro Industri Persada (NIP).

Teknik analisis data yang digunakan dalam penelitian ini menggunakan program SPSS, menggunakan uji Anava 1 jalan untuk menunjukkan seberapa jauh pengaruh variabel bebas dalam menerangkan variasi variabel terikat. Penentuan pengaruh paling optimal dan untuk menemukan perbedaan antar variabel maka dilanjutkan dengan uji *Duncan Multiple Tange Test* (DMRT) pada taraf 5%. Kemudian untuk mengetahui hubungan kerapatan industri dengan kadar klorofil menggunakan uji korelasi pearson.

HASIL DAN PEMBAHASAN

Hasil Penelitian

Berdasarkan hasil penelitian yang dilakukan di kawasan Ngoro Industri Persada pada berbagai stasiun menunjukkan bahwa kadar klorofil, gejala nekrosis dan klorosis pada daun Angsana bervariasi. Kadar klorofil yang di ukur adalah klorofil a dan klorofil b.


Kadar klorofil a dan klorofil bpohon angsana di kawasan Ngoro Industri Persada (NIP) di Kec. Ngoro Kab. Mojokerto dengan 6 stasiun dapat dilihat pada Tabel 1 dan Tabel 2. Rata-rata kadar klorofil pada daun angsana dengan 6 stasiun dapat dilihat pada Gambar 1.

Tabel 1. Kadar Klorofil a pada Pohon Angsana (<i>Pterocarps indicus</i> Willd.)
--

	St. 1	St. 2	St. 3	St. 4	St. 5	St. 6
U. 1 (mg/g)	11,668	7,380	8,186	22,547	14,297	20,607
U. 2 (mg/g)	5,743	20,402	8,881	13,362	17,810	16,112
U. 3 (mg/g)	7,290	9,056	4,832	11,264	10,495	14,784
U. 4 (mg/g)	2,905	4,946	5,537	13,872	10,743	18,831
Rata-rata (mg/g)	6,902	10,446	6,859	15,261	13,336	17,584
Kisaran (mg/g)	2,905-11,668	4,946-20,402	4,832-8,881	11,264-22,547	10,495-17,810	14,784-20,607
Kerapatan industri	6	5	18	2	2	0

Tabel 2. Kadar Klorofil b pada Pohon Angsana (<i>Pterocarps indicus</i> V
--

	1 doct 2. Tradai 1	cioronn o puda i c	mon ringsuna (r	icrocarps maici	15 VV 111 u .)	
	St. 1	St. 2	St. 3	St. 4	St. 5	St. 6
U. 1 (mg/g)	6,173	3,064	2,921	9,240	4,787	8,794
U. 2 (mg/g)	2,309	9,089	3,629	5,921	6,429	6,507
U. 3 (mg/g)	2,791	4,002	1,791	4,547	5,400	6,229
U. 4 (mg/g)	1,646	2,471	2,100	5,098	6,601	8,287
Rata-rata (mg/g)	3,23	4,657	2,61	6,202	5,804	7,454
Kisaran (mg/g)	1,646-6,173	2,471-9,089	1,791-3,629	4,547-9,240	4,787-6,429	6,229-8,287
Kerapatan industri	6	5	18	2	2	0

Gambar 1. Rata-rata Kadar Klorofil Total pada Daun Angsana di Kawasan Industri Ngoro Persada (NIP) Ngoro Mojokerto

PROSIDING SEMINAR NASIONAL III TAHUN 2017

"Biologi, Pembelajaran, dan Lingkungan Hidup Perspektif Interdisipliner" Diselenggarakan oleh Prodi Pendidikan Biologi-FKIP bekerjasama dengan Pusat Studi Lingkungan dan Kependudukan (PSLK) Universitas Muhammadiyah Malang, tanggal 29 April 2017

Rata-rata kadar klorofil a dan klorofil b lebih tinggi di stasiun 6 (Selatan Blok H2) sebesar 17,584 mg/g, 7,454 mg/g di bandingkan dengan stasiun yang lainnya, rata-rata klorofil a dan klorofil b yang paling rendah di stasiun 3 (Jalan Blok G dan N) sebesar 6,859 mg/g, 2,610 mg/g.

Daun secara makroskopik dapat memperlihatkan perubahan yang terjadi pada daun angsana pada masingmasing stasiun 1, stasiun 2, stasiun 3, stasiun 4, dan stasiun 5 di kawasan Ngoro Industri Persada (NIP) dapat dilihat pada Tabel 3. Sedangkan daun angsana pada stasiun 6 di kawasan Ngoro Industri Persada (NIP) tidak mengalami kerusakan secara makroskopik dapat dilihat pada Tabel 4.

Tabel 3. Daun Angsana (*Pterocarpus indicus* Willd.) yang Mengalami Kerusakan Secara Makroskopis

Stasiun	Klorosis	akan Secara Makr Nekrosis	Persentase
1			64%
2			46%
3			82%
4			32%
5			36%

Tabel 4. Daun Angsana (*Pterocarpus indicus* Willd.) yang Tidak Mengalami Kerusakan Secara Makroskopis

Stasiun	Normal	Normal	Persentase
6			0%

Pada stasiun 1, jaringan daun mengalami kerusakan secara makroskopis sebesar 75% dari total sampel yang di ambil sebanyak 28 helai daun. Kerusakan ini ditandai dengan adanya gejala klorosis, terjadinyat perubahan warna kuning pada jaringan diantara tulang daun (inteveinal yellowing), dan terdapat beberapa bagian daun yang menjadi coklat kemerahan (bronzing). Di ujung daun mulai nampak gejala lanjut yaitu nekrosis. Stasiun 2 juga terjadi kerusakan secara makroskopis sebesar 54%, terdapat gejala klorosis, terjadi perubahan warna kuning dan nampak mulai memutih pada jaringan tulang daun dan terjadi juga perubahan warna merah keungunan. Gejala nekrosis juga mulai nampak pada daerah pangkal daun. Stasiun 3 juga terajadi kerusakan sebesar 82%, jaringan daun juga mengalami hal yang sama yaitu klorosis, seluruh permukaan daun terjadi perubahan warna menjadi kuning dan nampak juga perubahan warna coklat kemerahan di beberapa bagianan daun. Gejala nekrosis juga hampir memenui permukaan daun.

Pada stasiun 4 mengalami kerusakan secara maksroskopis sebesar 32% dari total sampe yang di ambil sebanyak 28 helai daun, jaringan daun mengalami gejala klorosis, nampak terjadi perubahan warna kuning di daerah tepian daun, namun perubahan warna kuning ini tidak begitu dominan sehingga masih nampak warna hijau pada daun tersebut. Di ujung daun mulai nampak gejala lanjut yaitu nekrosis di bagian tengah daun. Stasiun 5 juga mengalami hal yang sama sebesar 36%, kerusakan yang dialami yaitu gejala klorosis, terjadi perubahan warna kuning pada daerah tepian daun. Beberapa bagian daun juga mengalami gejala lanjut yaitu nekrosis. Stasiun 6, jaringan daun tidak mengalami gejala klorosis dan nekrosis.

Pembahasan

Berdasarkan uji Anava 1 jalan maka dapat disimpulkan bahwa dengan perbedaan stasiun berpengaruh secara signifikan terhadap nilai kadar klorofil a dan klorofil b. Antar stasiun mempunyai kerapatan industri berbeda-beda sehingga dampak yang di timbulkan terhadap kadar klorofil a dan klorofil b juga berbeda.

Pada kawasan Ngoro Industri Persada (NIP) menunjukkan bahwa kadar klorofil a dan klorofil b pohon Angsana yang berada pada masing-masing lokasi itu

PROSIDING SEMINAR NASIONAL III TAHUN 2017

"Biologi, Pembelajaran, dan Lingkungan Hidup Perspektif Interdisipliner" Diselenggarakan oleh Prodi Pendidikan Biologi-FKIP bekerjasama dengan Pusat Studi Lingkungan dan Kependudukan (PSLK) Universitas Muhammadiyah Malang, tanggal 29 April 2017

berbeda. Kadar klorofil yang paling rendah sampai tertinggi berada pada stasiun 3, stasiun 1, stasiun 2, stasiun 5, stasiun 4, dan stasiun 6, hal ini terjadi karena pengaruh pencemaran udara yang dihasilkan oleh industri yang berada pada kawasan Ngoro Industri Persada (NIP) sehingga mempengaruhi kadar klorofil, klorosis dan nekrosis. Menurut Karliansyah (1997), pencemaran udara pada daun dapat dilihat dari kerusakan secara mikoskopis seperti terjadinya perubahan klorofil dan metabolisme, secara makroskopis seperti klorosis dan nekrosis.

Menurut Mowli dalam Karliansyah (1997), penurunan kadar klorofil terjadi sejalan dengan peningkatan pencemaran udara. Perubahan jumlah kadar klorofil terjadi akibat pemaparan pencemar dalam waktu yang lama dan kadar yang cukup tinggi (Rahayu dalam Karliansyah, 1997). Perubahan klorofil pada daun Angsana ini diakibatkan adanya penghambatan biosintesis Angsana klorofil pada daun (Ferdhiani. Pengahambatan biosintesis klorofil terjadi karena polutan yang dapat mengurangi asupan Mg dan Fe sehingga menyebabkan perubahan pada struktur dan jumlah klorofil (Novita, 2012). Faktor yang mempengaruhi pembentukan klorofil antara lain gen, cahaya dan unsur N, Mg, dan Fe. Unsur ini sebagai pembentuk dan katalis dalam sintesis klorofil (Subandi, 2008).

Pengaruh polutan pencemar udara terhadap klorofil sangat besar. Pada konsentrasi pencemar udara yang tinggi maka molekul klorofil terdegrasai menjadi paheophitin dan Mg²⁺. Pada proses ini molekul Mg²⁺ dalam molekul klorofil diganti oleh dua atom hidrogen yang berakibat perubahannya karakteristik spekturm cahaya dari molekul klorofil, bahkan dalam waktu pemaparan yang lama akan menyebabkan hilangnya klorofil (Siregar, 2005). Kovacs dalam Widowati (2011) menambahkan bahwa masuknya polutan berlebihan akan mengurangi asupan Mg sehingga menyebabkan perubahan pada volume dan jumlah kloroplas.

Carlson dalam Arrohmah (2007) menambahkan bahwa, klorofil mengalami degradasi karena kehilangan atom Mg dari molekul pusat atau hilangnya rantai ekor fitol. Molekul hasil degradasi atom Mg dari klorofil adalah feofitin dan molekul hasil degradasi rantai ekor fitol adalah klorofilida, sedangkan feoforbida terjadi ketika klorofil telah terdegradasi atom Mg serta rantai ekor fitolnya. Degradasi dari feofitin atau klorofilida akan menghasilkan molekul feoforbida, molekul ini terbentuk karena hilangnya rantai ekor fitol dan hilangnya Mg. Fitol adalah alkohol primer jenuh yang mempunyai daya afinitas yang kuat terhadap O2 dalam proses reduksi klorofil (Muthalib, 2009).

Berdasarkan uji Korelasi Pearson maka dapat disimpulkan bahwa antara klorofil a dan klorofil b dengan kerapatan industri memiliki bahwa terdapat hubungan. Koofisien korelasi = -0,580. Koofisen korelasi klorofil b = -0,616. Hal ini menunjukkan bahwa kadar klorofil a memiliki hubungan lemah dengan kerapatan industri dan mempunyai korelasi terbalik dengan kerapatan industri

yang berarti kadar klorofil a dan klorofil b mengalami penurunan seiring dengan semakin rapat industri di tempat tersebut.

Kadar klorofil yang rendah berbanding terbalik dengan kerapatan industri yang tinggi, sehingga intensitas polutan gas dan udara yang di hasilkan semakin banyak yang akan berdampak negatif terhadap pohon angsana seperti menurunnya kadar klorofil, terdapat gejala klorosis dan nekrosis pada daun. Menurut karliansyah (1997), bahwa kadar klorofil pada Angsana dan Mahoni mengalami penurunan sejalan dengan peningkatan pencemaran udara yaitu terjadi perbedaan nyata pada kadar klorofil baik itu kadar klorofil a dan b pada keempat lokasi penelitiannya. Semakin dekat tanaman dengan sumber gas buang, klorofil akan mengalami degradasi yang semakin besar, sehingga kadarnya menjadi semakin rendah (Anggrawulan, 2007). Klorofil sangat sensitif dan mudah terpengaruh pada saat terpapar oleh polutan dalam waktu tertentu pada kadar tertentu. Hubungan kadar klorofil dengan polutan berbanding terbalik dengan kandungan klorofil tanaman (Satolom, 2013).

Berdasarkan Tabel 3 daun Angsana pada kawasan Ngoro Industri Persada (NIP) ini mengalami kerusakan secara makorskopis yaitu mengalamai gejala klorosis dan nekrosis. Daun pada stasiun 1, 2, 3, 4, dan 5 (Jalan blok B_{2-1} , persimpangan jalan blok K dan V, jalan blok G dan N, jalan blok P, jalan blok E_2) rata-rata daun mengalami gejala klorosis dan nekrosis. Daun yang mengalami gejala klorosis dan nekrosis yang kronis berada pada stasiun 3 terletak pada jalan blok G dan N. Daun pada stasiun 6 (Selatan Blok H_2) merupakan daun yang normal artinya tidak mengalami kerusakan secara makroskopis atau mengalami gejala klorosis dan nekrosis.

Daun yang mengalami gejala nekrosis dan klorosis ditandai dengan perubahan warna kuning yang berlanjut hingga memutih pada jaringan diantara tulang daun (inteveinal yellowing), dan terdapat beberapa bagian daun vang menjadi coklat, merah kecoklatan atau merah keunguan (bronzing). Di ujung daun mulai nampak gejala lanjut yaitu kematian jaringan (nekrosis) (Wisler, dkk., 1998). Menurut Widagdo (2005), bentuk kerusakan pada daun disebabakan oleh penyerapan gas pencemar udara yang terpapar dengan konsentrasi yang cukup tinggi sehingga jaringan daun akan rusak dalam waktu yang relatif singkat. Perubahan warna daun menjadi kuning yang berlanjut hingga memutih dapat menandai bahwa telah terjadi kerusakan secara kronis, kebanyakan hal ini terjadi karena rusaknya klorofil dan karotenoid akibat absorpsi sejumlah gas pencemar dalam konsentrasi subletal dalam periode waktu yang lama.

Malhotra dan Khan dalam Kusuma (2011) menambahkan bahwa kerusakan tanaman karena pencemaran udara berawal dari tingkat biokimia (gangguan proses fotosintesis, respirasi, serta biosintesis protein dan lemak), selanjutnya tingkat ultrastruktural (disorganisasi sel membran), kemudian tingkat sel (dinding sel, mesofil, pecahnya inti sel) dan diakhiri dengan terlihatnya gejala pada jaringan daun klorosi dan

PROSIDING SEMINAR NASIONAL III TAHUN 2017

"Biologi, Pembelajaran, dan Lingkungan Hidup Perspektif Interdisipliner"
Diselenggarakan oleh Prodi Pendidikan Biologi-FKIP bekerjasama dengan
Pusat Studi Lingkungan dan Kependudukan (PSLK)
Universitas Muhammadiyah Malang, tanggal 29 April 2017

nekrosis. Gejala klorosis salah satunya disebabkan oleh defisiensi besi (Blesa dan Matijevic dalam Dawanaka, 2015). Ditambahkan oleh Kozlowski dan Mudds dalam Dwiputri (2015) menyatakan bahwa adanya pencemaran udara dapat menimbulkan nekrosis dan klorosis yang melibatkan mekanisme kerusakan klorofil, masuknya polutan pada daun dapat mengakibatkan rusaknya kutikula sehingga respirasi terhambat dan proses fotosintesis juga terhambat.

Daun-daun dihadapkan pada dosis polutan yang rendah tidak menyebabkan perobekan luka yang terlihat jelas, namun menyebabkan perobekan sistem membran tilakoid dalam kloroplas, tanaman yang diberi polutan dengan konsentrasi tinggi umumnya menyebabkan perlukaan yang nampak karena kematian, menjadi kering, dan jaringan daun memutih (Fitter dan Hay, 1998). Kerusakan ini berwal dari rusaknya struktur kloroplas. Pembentukan struktur kloroplas sangat dipengaruhi oleh unsur Mg. Unsur Mg termasuk unsur hara makro. merupakan penyusun molekul klorofil. Oleh karena itu dengan serapan polutan dalam jumlah kecil sudah dapat menggantikan Mg dalam klorofil yang selanjutnya merusak struktur kloroplas sebagai bahan warna hijau pada batang dan daun, sehingga berakibat menurunnya warna hijau, akhirnya menguning mengalami klorosis dan berujung pada gejala klorosis (Widowati, 2011).

Hasil penelitian ini diimplementasikan sebagai pembuatan handout yang dapat dimanfaatkan sebagai sumber belajar. Handout memiliki arti penting dalam proses pembelajaran, karena dengan adanya Handout diharapkan peserta didik dapat memperoleh informasi berkaitan dengan materi pokok "kerusakan lingkungan atau pencemaran lingkungan". Handout yang dibuat sesuai dengan KD 3.10 Menganalisis dasta perubahan lingkungan dan dampak dari perbubahan tersebut bagi kehidupan, materi pokok keruskan lingkungan atau pencemaran lingkungan, mata pelajaran Biologi SMA kelas X semester II. KD tersebut sesuai dengan penelitian yang telah dilakukan. Sehingga handout ini bisa membantu pengajar dalam mengajarkan materi tersebut.

PENUTUP

Hasil penelitian menunjukkan bahwa rata-rata kadar klorofil bervariasi. Kadar klorofil a dan klorofil b tertinggi pada selatan Blok H₂ sebesar 17,454 mg/g, dan 7,454 mg/g, kadar klorofil a dan b terendah pada jalan Blok G dan N sebesar 6,859 mg/g dan 2,610 mg/g. Kerapatan industri mempunyai hubungan berbanding terbalik dengan kadar klorofil, semakin banyak industri maka semakin sedikit kadar klorofil, dan kerusakan daun yang terkena pencemaran udara mengalami gejala klorosis dan nekrosis.

DAFTAR RUJUKAN

Anggrawulan, Endang & Solichatun. (2007). Kajian Klorofil dan Karotenoid *Plantago major* L. dan

- *Phaseolus vulgaris* L. sebagai Bioinikator Kualitas Udara. *Biodiversitas* 4 (8). 279-282.
- Arrohmah, (2007). Studi Karakteristik Klorofil Pada Daun Sebagai Material Photodetector Organic. Tugas Akhir (Skripsi tidak dipublikasikan). Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahan Alam, Universitas Sebelas Maret, Surakarta.
- Badan Pusat statistik Kabupaten Mojokerto. (2016). Statistik Daerah Kecamatan Ngoro 2016. Mojokerto: Badan Pusat Statistik
- Dawanaka, M., Suryanto E., & Wuntu A. D. (2015). Efek Ekstrak Fenolik dari Beberapa Limbah Tanaman Terhadap Fotoreduksi Fe³⁺ menjadi Fe²⁺. *Jurnal Mipa Unsrat Online*. 4 (1). 10-14.
- Dwiputri, D. A. (2015). Toleransi Spesies Pohon Terhadap Pencemaran Udara di Kawasan Industri Krakatau Kota Cilegon. *Tugas Akhir (Tesis)*. Sekolah Pascasrjana, Institu Pertanian Bogor. Bogor.
- Ferdhiani, A. A., Lestari, S., & Proklamasiningsih, E. (2015). Aktivitas Enzim Peroksidase dan Kadar Klorofi pada Daun Angsana (*Pterocarpus indicus*) sebagai Peneduh Jalan yang Terpapar Timbal. *Biosfera*. 32 (2). 126-133.
- Fitter, A. H. & Hay, R. K. M. (1998). *Fisiologi Lingkungan Tanaman*. Yogyakarta, Indonesia: Gajah Mada University Press.
- Karliansyah, N. S. W. (1997). Kerusakan Daun Tanaman sebagai Bioindikator Pencemaran Udara (Studi Kasus Tanaman Peneduh Jalan Angsana dan Mahoni dengan Pencemar Udara NO_x dan SO. (Tesis tidak dipublikasikan). Program Studi Ilmu Lingkungan, Program Pascasarjana, Universitas Indonesia. Jakarta.
- Kusuma, W. A. (2011). Penggunaan Tumbuhan Sebagai Bioindikator dalam Pemantauan pencemaran Udara. (Tugas akhir tidak dipublikasikan). Jurusan Teknik Lingkungan, Fakultas Teknik Sipil dan Perencanaan, ITS, Surabaya.
- Muthalib, A. (2009). *Klorofil dan Penyebaran di Perairan*. Retrieved form http://www.abdulmuthalib.co.cc/2009/06
- Novita, Y., & Purnomo, T., (2012). Penyerapan Logam Timbal (Pb) dan Kadar Klorofil *Elodea canadensis* pada Limbah Cair Pabrik Pulp dan Kertas. *LenteraBio* 1 (1), 1-8.
- Roziaty, Efri. (2009). Kandungan klorofil, struktur anatomi daun angsana (Pterocarpus indicus Willd.) dan kualitas udara ambien di sekitar kawasan industri pupuk PT. Pusri di Palembang. Sekolah pascasarjana, institur pertanian bogor. bogor.

PROSIDING SEMINAR NASIONAL III TAHUN 2017 "Biologi, Pembelajaran, dan Lingkungan Hidup Perspektif Interdisipliner" Diselenggarakan oleh Prodi Pendidikan Biologi-FKIP bekerjasama dengan Pusat Studi Lingkungan dan Kependudukan (PSLK) Universitas Muhammadiyah Malang, tanggal 29 April 2017

- Sastrawijaya, A.T. (2000). *Pencemaran Lingkungan*. Jakarta, Indonesia: Rineka Cipta.
- Satolom, A. W., Kandowangko, N. Y., & Katili, A. S. (2013). Analisis Kadar Klorofil, Indeks stomata dan Luas daun Tumbuhan Mahoni (*Swietenia macrophylla* King.) pada Beberapa Jalan di Gorontalo.
- Setiari, N., & Nurchayati, Y. (2009). Eksplorasi Kandungan Klorofil pada Beberapa Sayuran Hijau sebagai Alternatif Bahan Dasar *Food Supplement*. *Bioma*. 1 (11). 6-10.
- Siregar, E. B. M. (2005). *Pencemaran Udara, Respon Tanaman dan Pengaruhnya pada manusia.* e-USU Respository. Universitas Sumatra Utara
- Subandi, A. (2008). *Metabolisme*. Retreived form http://metabolisme. blogspot. /200 7/09/

- Suyitno, (2010). *Determinasi Pigmen dan Pengukurn Kandungan Klorofil Daun*. Yogyakarta, Indonesia: Biologi FMIPA UNY.
- Warsita, F.H., Dahlan, E.N., & Agus, P. (1995). Kandungan Klorofil-a dan Klorofil-b pada Daun Beberapa Jenis Anakan Pohon di Tepi Jalan Tol Jagorawi dan Balitra Kotamadya Bogor. *Media Konservasi*. 4 (4). 1-7
- Widagdo, S. (2005). Tanaman Elemen Lanskap Sebagai Biofilter Untuk Mereduksi Polusi Timbal (Pb) di Udara. Sekolah Pasca Sarjana/S3 IPB Bogor.
- Widowati, H. (2011). Pengaruh Logam Berat Cd, Pb, Terhadap Perubahan Warna Batang dan Daun Sayuran. *El Hayah*. 4 (1). 167-173
- Wisler, G. C., Duffus, J.E., Liu, H.Y., & Li, R. H. (1998). Ecology and epidemiology of whitefly-transmitted closteroviruses. *Plant Dis.* 82 (3): 270–280.