
A Study on the Implementation of YOLOv4
Algorithm with Hyperparameter Tuning for Car
Detection in Unmanned Aerial Vehicle Images

1st Muhammad Alfian Ramadhani
Informatics

University of Muhammadiyah Malang

Malang, Indonesia
fianrmdni@gmail.com

2nd Yufis Azhar
Informatics

University of Muhammadiyah Malang

Malang, Indonesia
yufis@umm.ac.id

 3rd Galih Wasis Wicaksono
Informatics

University of Muhammadiyah Malang

Malang, Indonesia
galih.w.w@umm.ac.id

Abstract—Unmanned Aerial Vehicles (UAVs) for

surveillance and monitoring have become more prevalent due to

their versatility and mobility. These vehicles capture high-

resolution images that provide a broad field of view in real-time.

Today, enhancing object detection accuracy on images captured

by unmanned aerial vehicles (UAVs) has become a significant

challenge. Through extensive research, it has been established

that the correct setup of hyperparameters is imperative to

achieving the highest accuracy in machine learning. Our study

introduces a technique that utilizes hyperparameter tuning to

implement the YOLOv4 algorithm, enabling the detection of

cars in unmanned aerial vehicle images. In general, all scenarios

of this study have different accuracy results, which have

implications for their detectability. Thus, scenario 3 of YOLOv4

hyperparameter tuning is the best model accuracy. Our

approach utilizes the PSU Aerial Car Images Dataset from

previous studies. During this research, accuracy values were

obtained through testing at the model validation stage rather

than at the testing stage. In this study, we achieved a validation

performance of the detection model by using a validation dataset

proportion of 20%. Based on our research, it has been revealed

that the YOLOv4 algorithm is a highly efficient car detection

system when it comes to unmanned aerial vehicle images.

Through rigorous testing of multiple hyperparameter tuning

scenarios, we achieved an exceptional accuracy of 99.02% in the

optimal model scenario, which utilized YOLOv4. Similarly, in

replicating a research paper's hyperparameter tuning methods

on YOLOv3, the highest accuracy of 98.40% was attained in

scenario 2.

Keywords— Hyperparameter, Tuning, YOLOv4, Drone, UAV

I. INTRODUCTION

Due to their low cost and easy operation, drones
(Unmanned Aerial Vehicles (UAVs)) have been used in many
military and civilian areas to meet explosive consumption
growth [1]. UAVs are increasingly used in surveillance and
monitoring because of their flexibility and mobility. The UAV
also produces high-resolution images for a wide field of view
in real-time. The low-quality object detection algorithms with
traditional machine-learning approaches could have improved
the UAVs. However, since the advent of deep learning
algorithms and especially convolutional neural networks,
object recognition and detection have shown a marked
increase in accuracy [2]. One of the problems handled by
computer vision, part of deep learning, is the multi-object
tracking of frame sequences [3]. This is an early indication of
the massive use of UAVs for data acquisition and analysis in
many engineering fields [2]. Detecting car objects accurately
using aerial images and calculating them in real-time for
traffic monitoring is a major challenge. It is important for
traffic control and supervision to track the path and direction

of objects. The system can help reduce traffic congestion and
direct vehicles to less crowded areas [3].

Recently, several object detection problems have been
better addressed using Convolutional Neural Networks
(CNNs). Computer vision research for intelligent
transportation systems also follows the trend, and many such
works are finding the practicality in their use [4]. The deep
learning algorithms that work on this method are RCNN, Fast
RCNN, and Faster RCNN. They are very accurate but so slow
that they cannot be used in real-time applications. In a single-
stage approach, object detection is taken as a regression
problem, and within its scope, object classification and
bounding box coordinates are given. One deep learning
algorithm that works using a single-stage approach is You
Only Look Once (YOLO) [5]. Several studies have been
conducted regarding YOLO. First, research was conducted by
Liao et al. [6] entitled Real-Time UAV Trash Monitoring
System. The main objective of his study is to build UAV and
IoT architectures using the YOLOv4-Tiny-3l model, which is
deployed to embedded systems so that UAVs have the
mobility to obtain beach images and map garbage information
in real-time for further analysis [6]. The advantages of this
research are hyperparameter adjustment and model evaluation
to get the best model and the lowest generalization error.
However, it has deficiencies related to system accuracy that
need to be improved. Then, another study conducted by Liu et
al. [7] proposed using the YOLO-Tomato detector for tomato
detection based on the YOLOv3 model. The strengths of this
study are the high accuracy using YOLOv3 and the ability to
detect tomatoes of various sizes, positions, and shapes.
However, it has the disadvantage of not having a system
performance comparison with other tomato detection
algorithms.

Furthermore, research by Setyaningsih et al. [8].
Significantly, YOLOv4 outperforms the Mask R-CNN with
an accuracy rate of up to 98.6%. The advantage of this
research is the use of two algorithms, namely Mask R-CNN
and YOLOv4 so that comparisons can be made, where the test
results show that both algorithms provide fairly good
accuracy. The drawback is the limited dataset. Subsequent
research, which became the main basis for this research, was
conducted by Bilel et al. [2]. This study considers the use of
Faster R-CNN and YOLOv3, CNN-based algorithms for car
detection in UAV imagery, and compares the two. YOLOv3
results outperform Faster R-CNN in sensitivity which means
that YOLOv3 is better able to extract all the cars in the image
with 99.07% accuracy, while Faster R-CNN is only 79.40%.
Based on previous research, hyperparameter tuning is an
essential technique for achieving high accuracy in machine

979-8-3503-2198-2/23/$31.00 ©2023 IEEE

2023 11th International Conference on Information and Communication Technology (ICoICT)

639

20
23

 1
1t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 In
fo

rm
at

io
n

an
d

C
om

m
un

ic
at

io
n

Te
ch

no
lo

gy
 (I

C
oI

C
T)

 |
97

9-
8-

35
03

-2
19

8-
2/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
oI

C
T5

82
02

.2
02

3.
10

26
26

51

Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on March 16,2024 at 03:36:55 UTC from IEEE Xplore. Restrictions apply.

learning. Still, it requires a large allocation of processing
resources [9].

By using the dataset contained in the study [2]. This
research aims to compare the results of the validation
performance of which detection model is better for car
detection, with the YOLOv3 and YOLOv4 algorithms using
hyperparameter tuning whether or not they receive data
augmentation treatment. With the contribution of this study, a
pattern of improvement was obtained for YOLOv4 using
hyperparameter tuning and data augmentation, while for
YOLOv3, the opposite result was obtained.

II. LITERATURE REVIEW

A. Object Detection

Object Detection is one of the fundamental topics in
computer vision [10]. Object detection has the task of
predicting the location of objects in the image through the
bounding box and classifying the objects contained in each
bounding box [11]. The main focus of research on most object
detectors based on deep learning is to develop better neural
network architectures and feature extraction and improve
classification and localization accuracy [10].

B. YOLOv3

You Only Look Once (YOLO) is one of the most
representative single-stage target detection algorithms. YOLO
has been updated for several versions, bringing significant
performance improvements. YOLOv2 removes the full
connection layer in YOLO. Then anchor boxes are introduced
to predict the bounding box. Furthermore, YOLOv3 replaced
the YOLOv2 backbone with Darknet53 and adopted
multiscale prediction, which significantly increased the
accuracy and speed of detection [12].

C. YOLOv4

YOLOv4 is an advanced version of the YOLO series
algorithm, which has been improved. YOLOv4 is based on
YOLOv3 and has incorporated many excellent detection steps
to improve accuracy. As of YOLOv4, the feature extraction
enhancement was located in Darknet53, later renamed
CSPDarknet53. The activation function changed from
LeakyRelu to Mish. Then, the SPP (Spatial Pyramid Pooling)
module was added to strengthen the feature extraction
network [13]. YOLO includes a One-Stage detector, so object
detection is performed directly on the input image using
CSPDarknet53. Meanwhile, in the Two-Stage object detector,
the approach is carried out in two stages, with the object
proposition and classification stage and refinement of the
bounding box, providing higher precision but requiring longer
processing time [14]. Fig. 1 is related to object detector
architecture based on its type: One-Stage Detector and Two-
Stage Detector.

Fig. 1. Object Detection

 YOLO architecture has 2 main parts, Backbone and Head.
The first detection is carried out by entering an image or video
in the input section; then, it will be forwarded to the Backbone

section. The backbone is used to improve accuracy before
detection at the Head [15].

D. Data Augmentation

Data augmentation is a technique that can reduce
overfitting by increasing the dataset size with minimum
effort[16]. Data augmentation generates more training
samples by adjusting the angle of rotation, exposure,
saturation, hue, and mosaic of the image dataset for training.
Data is usually augmented by carrying out transformations on
the data, or it can be interpreted as making a copy of the data
source without changing the labels printed on each part of the
data [16]. Data augmentation can improve the model's
adaptability to images and improve the model's generalization
ability.

E. Hyperparameter Tuning

Hyperparameter tuning is a configuration process in
machine learning where a set of possible values is selected for
each parameter, and the model is trained using every possible
combination. Hyperparameter tuning has an important role in
machine learning and deep learning algorithms because the
resulting parameters significantly affect the performance of
the CNN model [17]. The goal is to optimize which
hyperparameter values have the best performance to use to
produce the best final model.

F. Maintaining the Integrity of the Specifications

At this stage, the performance of the detection object
model is evaluated. The YOLO model trained on the PSU
Aerial Car Images dataset using hyperparameter tuning was
used to compare the model’s performance with previous
research [2]. Evaluation is done by calculating four
classification values, including False Positive (FP), True
Positive (TP), False Negative (FN), and True Negative (TN)
[18]. Then based on the four classification values above, we
can calculate performance metrics using a classification report
which contains recall, accuracy, precision, and f1-score to
evaluate the performance of the proposed model. The
following is the calculation formula.

 Recall (Sensitivity) =
��

�����
 (1)

 Accuracy =
�����

���
 (2)

 Precision =
��

�����
 (3)

 F1 - Score = 2 ∗
�

	

��������
�

	

�����

 (4)

In addition to the four classification reports above, mAP
(mean average precision) is usually used to evaluate model
performance. Mean Average Precision (mAP) is a metric used
to measure the accuracy of the object detection model for all
classes in a particular database [19].

 The confusion matrix is also used, which represents the
comparison results of the classification, namely true positive
(TP), false positive (FP), false negative (FN), and true
negative (TN). The confusion matrix is used to measure the
performance of an algorithm at the evaluation stage [20].

640
Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on March 16,2024 at 03:36:55 UTC from IEEE Xplore. Restrictions apply.

III. SYSTEM DESIGN

The flowchart in Fig. 2 sequentially shows the system
begins by collecting datasets, pre-processing, splitting data,
then augmenting data with a proportion of 80% for data train
and 20% data validation, then forming a detection model is
done with a pre-trained model from mscoco to YOLOv4
algorithm initial training. Then, during the detection model
training stage, the YOLOv4 algorithm will use CSP-
Darknet53 as the backbone variant for feature extraction [21].
Before being inserted into the feature extraction network,
images will be converted to a size of 416x416 pixels according
to the model configuration. The weighting results of the
YOLOv4 algorithm will be stored in a different way and
format, namely by storing the weighting results in every 100
iterations in the .weights format [8]. If the model is optimal,
then the flow ends. However, if not, then the hyperparameter
tuning process according to predetermined scenarios will
continue to be carried out until the best model is found.

Fig. 2. Flowchart of the research method

IV. RESULT & DISCUSSION

A. Dataset Collection

We are currently utilizing the PSU Aerial Car Images
Dataset [22] sourced from public domains to replicate the
procedures of prior studies. [2]. The available dataset
comprises a single class, which is further divided into 218 data
train and 52 data validation sets. Along with image data, each
image data also comes with an annotation file in .xml format
containing bounding box coordinates. Furthermore, this
research has also utilized the Aerials Car Dataset [23], [2]. The
Aerials Car Dataset has 89 images with characteristics similar
to the dataset before. A dataset will be selected for testing
purposes. Fig. 3 illustrates a car dataset utilized in drone
imagery as an example.

Fig. 3. Example of a car dataset on drone imagery

B. Pre-processing

We eliminate duplicated data between the training and test
sets during this phase to ensure optimal training. As a result,
the complete dataset consists of 266 image data and
annotations, with 214 assigned to training and 52 to validation.

It's important to note that the standard format for dataset
annotation is typically in .xml, which needs to be converted to
.txt to be used with the YOLO algorithm [24][25]. Utilizing
the xml_to_yolo_bbox custom function is the ideal solution
for this conversion process.

C. Data Split

The PSU Aerial Car Images Dataset undergoes a data split
at this stage. This process aims to divide the data into training
and validation sets. The goal is to achieve a ratio of
approximately 80 to 20, where 80% of the dataset is used for
training and 20% for validation. The aim is to ensure optimal
use of the data. We require 213 training data and 53 validation
data to adhere to the data split plan. Therefore, we must
manually move 1 data from the training to the validation set.
The combined dataset will comprise 213 training data, 53
validation data, and 1 test data. Afterward, the custom
functions "create_train_txt" and "create_valid_txt" will be
utilized to produce a .txt file that lists the names of the image
datasets utilized for training and validation purposes. Data
Augmentation

At this stage, we perform data augmentation on the train
data that was previously split. Our study utilizes a custom
function called "rotateYolobbox," followed by
"rotate_image." The outcome is the addition of 7 new data for
each dataset in the train data, with rotations of 45, 90, 135,
180, 225, 270, and 315. This process results in 1704 datasets
for training, 53 for validation, and 1 for testing.

D. Model Detection Forming

Once data augmentation is complete, the next stage
involves configuring the initial parameters for model building
using the YOLOv3 and YOLOv4 algorithms. This is also
where each algorithm's pre-trained model and backbone
selection take place. Table I provides a view of the initial
values for configuring the YOLOv3 and YOLOv4 tuning
hyperparameters.

The YOLOv3 and YOLOv4 algorithm detection models
are configured based on the number of object classes to be
detected, which, in this case, is the car class. The configuration
is also tailored to the graphics card’s capabilities used in this
study, the NVIDIA RTX 3070 TI. The parameters that affect
the graphics card's abilities are the batches and subdivisions,
with initial values of 64 and 16, respectively. This means that
the graphics card can process 64 data in one step by dividing
it into 64 data.

When processing an image, the initial configuration
considers various parameters, including color saturation,
exposure, and hue. Additionally, each algorithm requires a

641
Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on March 16,2024 at 03:36:55 UTC from IEEE Xplore. Restrictions apply.

specific input size, with YOLOv3 requiring 416x416 pixels
and YOLOv4 requiring 608x608 pixels.

TABLE I. INITIAL CONFIGURATION OF YOLOV3 AND YOLOV4
TUNING HYPERPARAMETERS.

Parameter YOLOv3 Value
YOLOv4

Value

 Batch 64 64

Subdivision 64 64

Width 416 608

Height 416 608

Channels 3 3

Momentum 0,9 0,949

Decay 0,0005 0.0005

Angle 0 0

Saturation 1,5 1.5

Exposure 1,5 1,5

Hue 0,1 0,1

Learning rate 0,001 0,01

Burn_in 1000 1000

Max_batches 6000 6000

Policy Steps Steps

Steps 4800,5400 4800,5400

Scales 0,1;0,1 0,1;0,1

E. Model Detection Training

During this stage, the YOLOv3 and YOLOv4 algorithms
will begin training with the initial hyperparameter
configuration, pre-trained model, and backbone utilized. The
training dataset makes up 80% of the data, while the validation
dataset makes up 20%. The length of the training process is
dependent on the hyperparameter configuration selected. To
view the accuracy and loss graph for YOLOv3, refer to Fig. 4;
for YOLOv4, refer to Fig. 5.

Fig. 4. YOLOv3 training data process

Fig. 5. YOLOv4 training data process

F. Hyperparameter Tuning

In this stage, we will fine-tune the hyperparameters to
identify the model with the best performance. Once we have
established the detection and training models, we will evaluate
and compare the new model with the previous one. Suppose
the new model performs worse or not better than the previous
model. In that case, we will continue with hyperparameter
tuning as per the planned scenario at the beginning of the
study. Please refer to Table II and Table III for the
hyperparameter configuration constraints and their respective
values used in some of the initial scenarios for YOLOv3 and
YOLOv4.

TABLE II. INITIAL SCENARIO FOR YOLOV3 HYPERPARAMETER
TUNING CONSTRAINTS.

Input Momentum Decay
Data

Augmentation
Base

416 0.9 0.0005 No
Default

YOLOv3

608 0.9 0.005 No Paper [2]

416 0.9 0.0005 Yes
Default

YOLOv3

608 0.9 0.005 Yes Paper [2]

TABLE III. INITIAL SCENARIO FOR YOLOV4 HYPERPARAMETER
TUNING CONSTRAINTS.

Input Momentum Decay
Data

Augmentation
Base

608 0.949 0.0005 No
Default

YOLOv4

608 0.9 0.005 No Paper [2]

608 0.949 0.0005 Yes
Default

YOLOv4

608 0.9 0.005 Yes Paper [2]

G. Detection Model Results

We have completed the validation performance of the
detection model using a 20% validation dataset proportion.
We will assess the best and last models in each
hyperparameter tuning scenario to evaluate the model's
performance. Our evaluation will consider precision, recall,
quality, f1-score, and processing time. To calculate the
evaluation limit formula, we will use the True Positive (TP),
False Positive (FP), and False Negative (FN) results for each

642
Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on March 16,2024 at 03:36:55 UTC from IEEE Xplore. Restrictions apply.

detection model. The YOLO algorithm is used in the odd-
numbered schemes, while in the even-numbered schemes, we
replicate the reference paper's YOLO algorithm. The accuracy
values for YOLOv3 and YOLOv4 are shown in Table IV and
V, respectively.

TABLE IV. RESULTS OF ACCURACY, TP, FP, AND FN VALUES IN
YOLOV3.

Algorithm Scheme Epoch MAP TP FP FN

YOLOv3 1 1300 96,94% 737 58 40

YOLOv3 1 6000 93,98% 720 53 57

YOLOv3 2 2300 98,40% 749 63 28

YOLOv3 2 6000 95,78% 742 32 35

YOLOv3 3 1600 81,15% 291 15 486

YOLOv3 3 6000 60,34% 138 5 639

YOLOv3 4 1300 70,49% 192 18 585

YOLOv3 4 6000 22,37% 17 3 760

According to research, when default hyperparameters
were used in YOLOv3 scenario 1, the best model achieved
96.94% accuracy, while the last model achieved 93.98%
accuracy. The hyperparameter tuning process was replicated
from previous research on YOLOv3 scenario 2 to improve
accuracy. This resulted in a higher accuracy rate for the best
model at 98.40% and 95.78% for the last model, compared to
scenario 1.

In previous studies, the YOLOv3 algorithm was replicated
in scenarios 1 and 2. Now, it's time to evaluate the results of
the YOLOv4 algorithm. It's worth noting that YOLOv4
scenario 1 achieved better accuracy results than YOLOv3
scenario 2, with the best model reaching 98.69% and the last
model reaching 96.95%. Therefore, it's necessary to run
YOLOv4 scenario 2 to compare its results.

TABLE V. RESULTS OF ACCURACY, TP, FP, AND FN VALUES IN
YOLOV4.

Algorithm Scheme Epoch MAP TP FP FN

YOLOv4 1 1500 98,69% 756 65 21

YOLOv4 1 6000 96,95% 753 56 24

YOLOv4 2 2200 99,01% 756 79 21

YOLOv4 2 6000 96,63% 757 60 20

YOLOv4 3 5200 99,02% 761 66 16

YOLOv4 3 6000 98,79% 752 63 25

YOLOv4 4 4900 98,99% 735 63 22

YOLOv4 4 6000 98,71% 749 63 28

In scenario 2 of YOLOv4, the best model has shown an
increase in accuracy compared to scenario 1, achieving
99.01%. However, the last model experienced a decrease of
96.63%. The training process will include data augmentation
in each algorithm's remaining initial scenario plans to improve
the results. The goal is to achieve an optimal model outcome.

After implementing data augmentation, the YOLOv4
scenario 3 algorithm showed a significant improvement in the
best model's performance, with a 99.02% increase compared
to the previous scenario. However, in YOLOv4 scenario 4,

both models showed a decrease in performance compared to
YOLOv4 scenario 3, with the best model achieving 98.99%
and the last model achieving 98.71%. This indicates that
YOLOv4 scenario 3 with augmented data had the highest
performance among the four scenarios. The classification
reports for YOLOv3 and YOLOv4 are presented in Tables VI
and Table VII, respectively.

TABLE VI. RESULTS OF PRECISION, RECALL, F-1 SCORE, QUALITY,
AND PROCESSING TIME IN YOLOV3.

Algorithm Scheme Precision Recall
F1-

Score
Quality

YOLOv3 1 92,60% 94,85% 93,77% 88,26%

YOLOv3 1 93,14% 92,66% 92,90% 86,75%

YOLOv3 2 92,24% 96,40% 94,27% 89,17%

YOLOv3 2 95,87% 95,50% 95,68% 91,72%

YOLOv3 3 95,10% 37,45% 53,74% 36,74%

YOLOv3 3 96,50% 17,76% 30,00% 17,65%

YOLOv3 4 91,43% 24,71% 38,91% 24,15%

YOLOv3 4 85,00% 2,19% 4,27% 2,18%

TABLE VII. RESULTS OF PRECISION, RECALL, F-1 SCORE, QUALITY,
AND PROCESSING TIME IN YOLOV4.

Algorithm Scheme Precision Recall
F1-

Score
Quality

YOLOv4 1 92,08% 97,30% 94,62% 89,79%

YOLOv4 1 93,08% 96,91% 94,96% 90,40%

YOLOv4 2 90,54% 97,30% 93,80% 88,32%

YOLOv4 2 92,66% 97,43% 94,98% 90,44%

YOLOv4 3 92,02% 97,94% 94,89% 90,27%

YOLOv4 3 92,27% 96.78% 94,47% 89,52%

YOLOv4 4 92,11% 97,09% 94,53% 89,63%

YOLOv4 4 92,24% 96,40% 94,27% 89,17%

Upon thorough analysis of the YOLOv4 results, we have
successfully replicated YOLOv3 hyperparameter tuning
scenarios 1 and 2 into scenarios 3 and 4, respectively, utilizing
the same dataset post-augmentation. However, it has come to
our attention that scenarios 3 and 4 exhibited lower accuracy
than the original scenarios before augmentation. The best
model in scenario 3 achieved an accuracy of 81.15%, while
the last model reached 60.34%. On the other hand, scenario 4
produced a best model accuracy of 70.49% and a previous
model accuracy of 22.37%.

The model's performance can be controlled and optimized
within predefined boundaries by effectively tuning
hyperparameters. In both YOLOv3 scenario two and
YOLOv4 scenario three, the top-performing models were
identified based on their exceptional accuracy and recall
values, outperforming all other scenarios.

H. Detection Model Testing Results

The final step is choosing and evaluating the top-
performing model among all YOLOv4 scenarios to detect car

643
Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on March 16,2024 at 03:36:55 UTC from IEEE Xplore. Restrictions apply.

objects. The testing data set comprises selected samples from
the aerial cars data set. These samples share similar traits with
the training and validation data sets but have never been
utilized during the training or validation phases, making them
unseen data. In scenario 2 of the YOLOv3 model, the testing
data successfully detects a car with an indication of its
presence through a labeled bounding box. Fig. 6 displays the
relevant test results.

Fig. 6. The results of testing the YOLOv3 detection model in scenario 2

Fig. 7 displays the test results from the YOLOv4's top
model in scenario 3, where a car label and its bounding box
indicate its detection in the testing data.

Fig. 7. The results of testing the YOLOv4 detection model in scenario 3

V. CONCLUSION

After conducting numerous hyperparameter tuning
scenarios, the YOLOv4 algorithm was implemented as a car
detection system on unmanned aerial vehicle images,
achieving a remarkable accuracy rate of 99.02% in the best
model scenario 3 YOLOv4. Moreover, we replicated the
hyperparameter tuning from previous research on YOLOv3
and achieved the highest accuracy value in the best model
scenario 2, with a value of 98.40%. Our detection model table
analysis revealed that YOLOv4 experienced an increase in
accuracy after data augmentation, whereas YOLOv3's
accuracy decreased. We recommend replicating the
experiment with some modifications to hyperparameter
tuning and adding new data through data augmentation
techniques to further enhance our findings. This will provide
valuable insights into the patterns of accuracy increase and
decrease in general for YOLOv3 and YOLOv4 after applying
hyperparameter tuning and data augmentation.

REFERENCES

[1] M. Wu, W. Xie, X. Shi, P. Shao and Z. Shi, "Real-time drone detection
using deep learning approach", International Conference on Machine
Learning and Intelligent Communications, pp. 22-32, 2018.

[2] B. Benjdira, T. Khursheed, A. Koubaa, A. Ammar, and K. Ouni, “Car
detection using unmanned aerial vehicles: Comparison between faster
R-CNN and YOLOv3,” in Proc. 1st Int. Conf. Unmanned Vehicle Syst.-
Oman (UVS), Muscat, Oman, Feb. 2019, pp. 1–6.

[3] D. M. Jiménez-Bravo, Á. Lozano Murciego, A. Sales Mendes, H.
Sánchez San Blás, and J. Bajo, “Multi-object tracking in traffic

environments: A systematic literature review,” Neurocomputing, vol.
494. Elsevier B.V., pp. 43–55, Jul. 14, 2022.

[4] Shehan P. Rajendran, Linu Shine, R. Pradeep and Sajith
Vijayaraghavan, "Real-time traffic sign recognition using YOLOv3
based detector", 2019 10th International Conference on Computing
Communication and Networking Technologies (ICCCNT), pp. 1-7,
2019.

[5] N. Aswini, S. V. Uma and V. Akhilesh, "Drone to obstacle distance
estimation using YOLO V3 network and mathematical principles", J.
Phys. Conf. Ser., vol. 2161, Jan. 2022.

[6] Y. H. Liao and J. G. Juang, “Real‐Time UAV Trash Monitoring
System,” Applied Sciences (Switzerland), vol. 12, Feb. 2022.

[7] G. Liu, J. C. Nouaze, P. L. T. Mbouembe, and J. H. Kim, “YOLO-
tomato: A robust algorithm for tomato detection based on YOLOv3,”
Sensors (Switzerland), vol. 20, Apr. 2020.

[8] E. R. Setyaningsih and M. S. Edy, “YOLOv4 dan Mask R-CNN Untuk
Deteksi Kerusakan Pada Karung Komoditi,” Teknika, vol. 11, pp. 45–
52, Mar. 2022.

[9] U. Misra et al., "Rubberband: Cloud-based hyperparameter tuning",
Proc. 16th Eur. Conf. Comput. Syst., pp. 327-342, 2021.

[10] Z. Xia, C. Zhang, and J. Kim, “Improving Object Detection Using
Weakly-Annotated Auxiliary Multi-Label Segmentation,” IEEE
Access, vol. 9, pp. 161283–161291, 2021.

[11] Elgendy, M. Deep Learning for Vision Systems; Simon and Schuster:
New York, NY, USA, 2020.

[12] X. Ma, K. Ji, B. Xiong, L. Zhang, S. Feng, and G. Kuang, “Light-
YOLOv4: An Edge-Device Oriented Target Detection Method for
Remote Sensing Images,” IEEE J Sel Top Appl Earth Obs Remote Sens,
vol. 14, pp. 10808–10820, 2021.

[13] H. Linglin, L. Qiang, H. Xianzhen, and L. Maosong, “Research on
pruning algorithm of target detection model with YOLOv4,” in
Proceedings - 2020 Chinese Automation Congress, CAC 2020, Institute
of Electrical and Electronics Engineers Inc., pp. 3283–3287, Nov. 2020.

[14] A. Faustine and G. P. Kusuma, “DETECTING OBJECTS FROM
AERIAL IMAGES USING SINGLE-STAGE DETECTION
METHOD,” J Theor Appl Inf Technol, vol. 31, 2022.

[15] M. Furqan Rasyid, M. Syukri Mustafa, A. Asvin Mahersatillah Suradi,
“Menghitung Akurasi Sistem Deteksi Masker Berdasarkan Arah
Pandangan Kepala Objek Calculating Mask Detection System Accuracy
Based on Object Head View Direction,” Computer Science Research
and Its Development Journal, vol. 14, pp. 203–214, 2022.

[16] R. Z. Fadillah, A. Irawan, M. Susanty, “Data Augmentasi Untuk
Mengatasi Keterbatasan Data Pada Model Penerjemah Bahasa Isyarat
Indonesia (BISINDO),” JURNAL INFORMATIKA, vol. 8, pp. 208-
2014, 2021.

[17] A. E. MINARNO, M. H. C. MANDIRI, and M. R. ALFARIZY,
“Klasifikasi COVID-19 menggunakan Filter Gabor dan CNN dengan
Hyperparameter Tuning,” ELKOMIKA: Jurnal Teknik Energi Elektrik,
Teknik Telekomunikasi, & Teknik Elektronika, vol. 9, p. 493, Jul. 2021.

[18] Y. Song, W. Taylor, Y. Ge, M. Usman, M. A. Imran, and Q. H. Abbasi,
“Evaluation of deep learning models in contactless human motion
detection system for next generation healthcare,” Sci Rep, vol. 12, Dec.
2022.

[19] R. Padilla, W. L. Passos, T. L. B. Dias, S. L. Netto, and E. A. B. Da
Silva, “A comparative analysis of object detection metrics with a
companion open-source toolkit,” Electronics (Switzerland), vol. 10, pp.
1–28, Feb. 2021.

[20] S. Lasniari, J. Jasril, S. Sanjaya, F. Yanto, and M. Affandes, “Pengaruh
Hyperparameter Convolutional Neural Network Arsitektur ResNet-50
Pada Klasifikasi Citra Daging Sapi dan Daging Babi,” J. Nas.
Komputasi dan Teknol. Inf., vol. 5, pp. 474–481, 2022.

[21] X. Jiang, T. Gao, Z. Zhu and Y. Zhao, "Real-time face mask detection
method based on YOLOv3", Electronics, vol. 10, no. 7, pp. 837, 2021.

[22] PSU Car Dataset. Available online: https://github.com/aniskoubaa/psu-
car-dataset (accessed on 20 July 2023).

[23] Aerial-Car-Dataset. Available online: https://github.com/jekhor/aerial-
cars-dataset (accessed on 20 July 2023).

[24] W. Widyawati and R. Febriani, “Real-time detection of fruit ripeness
using the YOLOv4 algorithm,” Teknika: Jurnal Sains dan Teknologi,
vol. 17, p. 205, Nov. 2021.

[25] A. Bochkovskiy, C. Y. Wang and H. Y. M. Liao, "YOLOv4: Optimal
Speed and Accuracy of Object Detection", arXiv preprint
arXiv:2004.10934, 2020.

644
Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on March 16,2024 at 03:36:55 UTC from IEEE Xplore. Restrictions apply.

