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Abstract—Unmanned Aerial Vehicles (UAVs) for 

surveillance and monitoring have become more prevalent due to 

their versatility and mobility. These vehicles capture high-

resolution images that provide a broad field of view in real-time. 

Today, enhancing object detection accuracy on images captured 

by unmanned aerial vehicles (UAVs) has become a significant 

challenge. Through extensive research, it has been established 

that the correct setup of hyperparameters is imperative to 

achieving the highest accuracy in machine learning. Our study 

introduces a technique that utilizes hyperparameter tuning to 

implement the YOLOv4 algorithm, enabling the detection of 

cars in unmanned aerial vehicle images. In general, all scenarios 

of this study have different accuracy results, which have 

implications for their detectability. Thus, scenario 3 of YOLOv4 

hyperparameter tuning is the best model accuracy. Our 

approach utilizes the PSU Aerial Car Images Dataset from 

previous studies. During this research, accuracy values were 

obtained through testing at the model validation stage rather 

than at the testing stage. In this study, we achieved a validation 

performance of the detection model by using a validation dataset 

proportion of 20%. Based on our research, it has been revealed 

that the YOLOv4 algorithm is a highly efficient car detection 

system when it comes to unmanned aerial vehicle images. 

Through rigorous testing of multiple hyperparameter tuning 

scenarios, we achieved an exceptional accuracy of 99.02% in the 

optimal model scenario, which utilized YOLOv4. Similarly, in 

replicating a research paper's hyperparameter tuning methods 

on YOLOv3, the highest accuracy of 98.40% was attained in 

scenario 2. 
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I. INTRODUCTION 

Due to their low cost and easy operation, drones 
(Unmanned Aerial Vehicles (UAVs)) have been used in many 
military and civilian areas to meet explosive consumption 
growth [1]. UAVs are increasingly used in surveillance and 
monitoring because of their flexibility and mobility. The UAV 
also produces high-resolution images for a wide field of view 
in real-time. The low-quality object detection algorithms with 
traditional machine-learning approaches could have improved 
the UAVs. However, since the advent of deep learning 
algorithms and especially convolutional neural networks, 
object recognition and detection have shown a marked 
increase in accuracy [2]. One of the problems handled by 
computer vision, part of deep learning, is the multi-object 
tracking of frame sequences [3]. This is an early indication of 
the massive use of UAVs for data acquisition and analysis in 
many engineering fields [2]. Detecting car objects accurately 
using aerial images and calculating them in real-time for 
traffic monitoring is a major challenge. It is important for 
traffic control and supervision to track the path and direction 

of objects. The system can help reduce traffic congestion and 
direct vehicles to less crowded areas [3]. 

Recently, several object detection problems have been 
better addressed using Convolutional Neural Networks 
(CNNs). Computer vision research for intelligent 
transportation systems also follows the trend, and many such 
works are finding the practicality in their use [4]. The deep 
learning algorithms that work on this method are RCNN, Fast 
RCNN, and Faster RCNN. They are very accurate but so slow 
that they cannot be used in real-time applications. In a single-
stage approach, object detection is taken as a regression 
problem, and within its scope, object classification and 
bounding box coordinates are given. One deep learning 
algorithm that works using a single-stage approach is You 
Only Look Once (YOLO) [5]. Several studies have been 
conducted regarding YOLO. First, research was conducted by 
Liao et al. [6] entitled Real-Time UAV Trash Monitoring 
System. The main objective of his study is to build UAV and 
IoT architectures using the YOLOv4-Tiny-3l model, which is 
deployed to embedded systems so that UAVs have the 
mobility to obtain beach images and map garbage information 
in real-time for further analysis [6]. The advantages of this 
research are hyperparameter adjustment and model evaluation 
to get the best model and the lowest generalization error. 
However, it has deficiencies related to system accuracy that 
need to be improved. Then, another study conducted by Liu et 
al. [7] proposed using the YOLO-Tomato detector for tomato 
detection based on the YOLOv3 model. The strengths of this 
study are the high accuracy using YOLOv3 and the ability to 
detect tomatoes of various sizes, positions, and shapes. 
However, it has the disadvantage of not having a system 
performance comparison with other tomato detection 
algorithms. 

Furthermore, research by Setyaningsih et al. [8]. 
Significantly, YOLOv4 outperforms the Mask R-CNN with 
an accuracy rate of up to 98.6%. The advantage of this 
research is the use of two algorithms, namely Mask R-CNN 
and YOLOv4 so that comparisons can be made, where the test 
results show that both algorithms provide fairly good 
accuracy. The drawback is the limited dataset. Subsequent 
research, which became the main basis for this research, was 
conducted by Bilel et al. [2]. This study considers the use of 
Faster R-CNN and YOLOv3, CNN-based algorithms for car 
detection in UAV imagery, and compares the two. YOLOv3 
results outperform Faster R-CNN in sensitivity which means 
that YOLOv3 is better able to extract all the cars in the image 
with 99.07% accuracy, while Faster R-CNN is only 79.40%. 
Based on previous research, hyperparameter tuning is an 
essential technique for achieving high accuracy in machine 
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learning. Still, it requires a large allocation of processing 
resources [9]. 

By using the dataset contained in the study [2]. This 
research aims to compare the results of the validation 
performance of which detection model is better for car 
detection, with the YOLOv3 and YOLOv4 algorithms using 
hyperparameter tuning whether or not they receive data 
augmentation treatment. With the contribution of this study, a 
pattern of improvement was obtained for YOLOv4 using 
hyperparameter tuning and data augmentation, while for 
YOLOv3, the opposite result was obtained. 

II. LITERATURE REVIEW 

A. Object Detection 

Object Detection is one of the fundamental topics in 
computer vision [10]. Object detection has the task of 
predicting the location of objects in the image through the 
bounding box and classifying the objects contained in each 
bounding box [11]. The main focus of research on most object 
detectors based on deep learning is to develop better neural 
network architectures and feature extraction and improve 
classification and localization accuracy [10]. 

B. YOLOv3 

You Only Look Once (YOLO) is one of the most 
representative single-stage target detection algorithms. YOLO 
has been updated for several versions, bringing significant 
performance improvements. YOLOv2 removes the full 
connection layer in YOLO. Then anchor boxes are introduced 
to predict the bounding box. Furthermore, YOLOv3 replaced 
the YOLOv2 backbone with Darknet53 and adopted 
multiscale prediction, which significantly increased the 
accuracy and speed of detection [12]. 

C. YOLOv4 

YOLOv4 is an advanced version of the YOLO series 
algorithm, which has been improved. YOLOv4 is based on 
YOLOv3 and has incorporated many excellent detection steps 
to improve accuracy. As of YOLOv4, the feature extraction 
enhancement was located in Darknet53, later renamed 
CSPDarknet53. The activation function changed from 
LeakyRelu to Mish. Then, the SPP (Spatial Pyramid Pooling) 
module was added to strengthen the feature extraction 
network [13]. YOLO includes a One-Stage detector, so object 
detection is performed directly on the input image using 
CSPDarknet53. Meanwhile, in the Two-Stage object detector, 
the approach is carried out in two stages, with the object 
proposition and classification stage and refinement of the 
bounding box, providing higher precision but requiring longer 
processing time [14]. Fig. 1 is related to object detector 
architecture based on its type: One-Stage Detector and Two-
Stage Detector.  

 
Fig. 1. Object Detection  

 YOLO architecture has 2 main parts, Backbone and Head. 
The first detection is carried out by entering an image or video 
in the input section; then, it will be forwarded to the Backbone 

section. The backbone is used to improve accuracy before 
detection at the Head [15]. 

D. Data Augmentation 

Data augmentation is a technique that can reduce 
overfitting by increasing the dataset size with minimum 
effort[16]. Data augmentation generates more training 
samples by adjusting the angle of rotation, exposure, 
saturation, hue, and mosaic of the image dataset for training. 
Data is usually augmented by carrying out transformations on 
the data, or it can be interpreted as making a copy of the data 
source without changing the labels printed on each part of the 
data [16]. Data augmentation can improve the model's 
adaptability to images and improve the model's generalization 
ability. 

E. Hyperparameter Tuning 

Hyperparameter tuning is a configuration process in 
machine learning where a set of possible values is selected for 
each parameter, and the model is trained using every possible 
combination. Hyperparameter tuning has an important role in 
machine learning and deep learning algorithms because the 
resulting parameters significantly affect the performance of 
the CNN model [17]. The goal is to optimize which 
hyperparameter values have the best performance to use to 
produce the best final model. 

F. Maintaining the Integrity of the Specifications 

At this stage, the performance of the detection object 
model is evaluated. The YOLO model trained on the PSU 
Aerial Car Images dataset using hyperparameter tuning was 
used to compare the model’s performance with previous 
research [2]. Evaluation is done by calculating four 
classification values, including False Positive (FP), True 
Positive (TP), False Negative (FN), and True Negative (TN) 
[18]. Then based on the four classification values above, we 
can calculate performance metrics using a classification report 
which contains recall, accuracy, precision, and f1-score to 
evaluate the performance of the proposed model. The 
following is the calculation formula. 

 Recall (Sensitivity)  = 
��

�����
 (1) 

 Accuracy  = 
�����

���
 (2) 

 Precision  = 
��

�����
 (3) 

 F1 - Score  = 2 ∗
�

	


��������
�

	

�����

 (4) 

In addition to the four classification reports above, mAP 
(mean average precision) is usually used to evaluate model 
performance. Mean Average Precision (mAP) is a metric used 
to measure the accuracy of the object detection model for all 
classes in a particular database [19]. 

 The confusion matrix is also used, which represents the 
comparison results of the classification, namely true positive 
(TP), false positive (FP), false negative (FN), and true 
negative (TN). The confusion matrix is used to measure the 
performance of an algorithm at the evaluation stage [20]. 
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III. SYSTEM DESIGN 

The flowchart in Fig. 2 sequentially shows the system 
begins by collecting datasets, pre-processing, splitting data, 
then augmenting data with a proportion of 80% for data train 
and 20% data validation, then forming a detection model is 
done with a pre-trained model from mscoco to YOLOv4 
algorithm initial training. Then, during the detection model 
training stage, the YOLOv4 algorithm will use CSP-
Darknet53 as the backbone variant for feature extraction [21]. 
Before being inserted into the feature extraction network, 
images will be converted to a size of 416x416 pixels according 
to the model configuration. The weighting results of the 
YOLOv4 algorithm will be stored in a different way and 
format, namely by storing the weighting results in every 100 
iterations in the .weights format [8]. If the model is optimal, 
then the flow ends. However, if not, then the hyperparameter 
tuning process according to predetermined scenarios will 
continue to be carried out until the best model is found. 

 
Fig. 2. Flowchart of the research method 

IV. RESULT & DISCUSSION 

A. Dataset Collection 

We are currently utilizing the PSU Aerial Car Images 
Dataset [22] sourced from public domains to replicate the 
procedures of prior studies. [2]. The available dataset 
comprises a single class, which is further divided into 218 data 
train and 52 data validation sets. Along with image data, each 
image data also comes with an annotation file in .xml format 
containing bounding box coordinates. Furthermore, this 
research has also utilized the Aerials Car Dataset [23], [2]. The 
Aerials Car Dataset has 89 images with characteristics similar 
to the dataset before. A dataset will be selected for testing 
purposes. Fig. 3 illustrates a car dataset utilized in drone 
imagery as an example. 

 
Fig. 3. Example of a car dataset on drone imagery 

B. Pre-processing 

We eliminate duplicated data between the training and test 
sets during this phase to ensure optimal training. As a result, 
the complete dataset consists of 266 image data and 
annotations, with 214 assigned to training and 52 to validation. 

It's important to note that the standard format for dataset 
annotation is typically in .xml, which needs to be converted to 
.txt to be used with the YOLO algorithm [24][25]. Utilizing 
the xml_to_yolo_bbox custom function is the ideal solution 
for this conversion process. 

C. Data Split 

The PSU Aerial Car Images Dataset undergoes a data split 
at this stage. This process aims to divide the data into training 
and validation sets. The goal is to achieve a ratio of 
approximately 80 to 20, where 80% of the dataset is used for 
training and 20% for validation. The aim is to ensure optimal 
use of the data. We require 213 training data and 53 validation 
data to adhere to the data split plan. Therefore, we must 
manually move 1 data from the training to the validation set. 
The combined dataset will comprise 213 training data, 53 
validation data, and 1 test data. Afterward, the custom 
functions "create_train_txt" and "create_valid_txt" will be 
utilized to produce a .txt file that lists the names of the image 
datasets utilized for training and validation purposes. Data 
Augmentation 

At this stage, we perform data augmentation on the train 
data that was previously split. Our study utilizes a custom 
function called "rotateYolobbox," followed by 
"rotate_image." The outcome is the addition of 7 new data for 
each dataset in the train data, with rotations of 45, 90, 135, 
180, 225, 270, and 315. This process results in 1704 datasets 
for training, 53 for validation, and 1 for testing. 

D. Model Detection Forming 

Once data augmentation is complete, the next stage 
involves configuring the initial parameters for model building 
using the YOLOv3 and YOLOv4 algorithms. This is also 
where each algorithm's pre-trained model and backbone 
selection take place. Table I provides a view of the initial 
values for configuring the YOLOv3 and YOLOv4 tuning 
hyperparameters. 

The YOLOv3 and YOLOv4 algorithm detection models 
are configured based on the number of object classes to be 
detected, which, in this case, is the car class. The configuration 
is also tailored to the graphics card’s capabilities used in this 
study, the NVIDIA RTX 3070 TI. The parameters that affect 
the graphics card's abilities are the batches and subdivisions, 
with initial values of 64 and 16, respectively. This means that 
the graphics card can process 64 data in one step by dividing 
it into 64 data. 

When processing an image, the initial configuration 
considers various parameters, including color saturation, 
exposure, and hue. Additionally, each algorithm requires a 
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specific input size, with YOLOv3 requiring 416x416 pixels 
and YOLOv4 requiring 608x608 pixels. 

TABLE I.  INITIAL CONFIGURATION OF YOLOV3 AND YOLOV4 
TUNING HYPERPARAMETERS. 

Parameter YOLOv3 Value 
YOLOv4 

Value 

 Batch 64 64 

Subdivision 64 64 

Width 416 608 

Height 416 608 

Channels 3 3 

Momentum 0,9 0,949 

Decay 0,0005 0.0005 

Angle 0 0 

Saturation 1,5 1.5 

Exposure 1,5 1,5 

Hue 0,1 0,1 

Learning rate 0,001 0,01 

Burn_in 1000 1000 

Max_batches 6000 6000 

Policy Steps Steps 

Steps 4800,5400 4800,5400 

Scales 0,1;0,1 0,1;0,1 

 

E. Model Detection Training 

During this stage, the YOLOv3 and YOLOv4 algorithms 
will begin training with the initial hyperparameter 
configuration, pre-trained model, and backbone utilized. The 
training dataset makes up 80% of the data, while the validation 
dataset makes up 20%. The length of the training process is 
dependent on the hyperparameter configuration selected. To 
view the accuracy and loss graph for YOLOv3, refer to Fig. 4; 
for YOLOv4, refer to Fig. 5. 

 
Fig. 4. YOLOv3 training data process 

 
Fig. 5. YOLOv4 training data process 

F. Hyperparameter Tuning 

In this stage, we will fine-tune the hyperparameters to 
identify the model with the best performance. Once we have 
established the detection and training models, we will evaluate 
and compare the new model with the previous one. Suppose 
the new model performs worse or not better than the previous 
model. In that case, we will continue with hyperparameter 
tuning as per the planned scenario at the beginning of the 
study. Please refer to Table II and Table III for the 
hyperparameter configuration constraints and their respective 
values used in some of the initial scenarios for YOLOv3 and 
YOLOv4. 

TABLE II.  INITIAL SCENARIO FOR YOLOV3 HYPERPARAMETER 
TUNING CONSTRAINTS. 

Input Momentum Decay 
Data 

Augmentation 
Base 

416 0.9 0.0005 No 
Default 

YOLOv3 

608 0.9 0.005 No Paper [2] 

416 0.9 0.0005 Yes 
Default 

YOLOv3 

608 0.9 0.005 Yes Paper [2] 

TABLE III.  INITIAL SCENARIO FOR YOLOV4 HYPERPARAMETER 
TUNING CONSTRAINTS. 

Input Momentum Decay 
Data 

Augmentation 
Base 

608 0.949 0.0005 No 
Default 

YOLOv4 

608 0.9 0.005 No Paper [2] 

608 0.949 0.0005 Yes 
Default 

YOLOv4 

608 0.9 0.005 Yes Paper [2] 

G. Detection Model Results 

We have completed the validation performance of the 
detection model using a 20% validation dataset proportion. 
We will assess the best and last models in each 
hyperparameter tuning scenario to evaluate the model's 
performance. Our evaluation will consider precision, recall, 
quality, f1-score, and processing time. To calculate the 
evaluation limit formula, we will use the True Positive (TP), 
False Positive (FP), and False Negative (FN) results for each 
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detection model. The YOLO algorithm is used in the odd-
numbered schemes, while in the even-numbered schemes, we 
replicate the reference paper's YOLO algorithm. The accuracy 
values for YOLOv3 and YOLOv4 are shown in Table IV and 
V, respectively. 

TABLE IV.  RESULTS OF ACCURACY, TP, FP, AND FN VALUES IN 
YOLOV3. 

Algorithm Scheme Epoch MAP TP FP FN 

YOLOv3 1 1300 96,94% 737 58 40 

YOLOv3 1 6000 93,98% 720 53 57 

YOLOv3 2 2300 98,40% 749 63 28 

YOLOv3 2 6000 95,78% 742 32 35 

YOLOv3 3 1600 81,15% 291 15 486 

YOLOv3 3 6000 60,34% 138 5 639 

YOLOv3 4 1300 70,49% 192 18 585 

YOLOv3 4 6000 22,37% 17 3 760 

According to research, when default hyperparameters 
were used in YOLOv3 scenario 1, the best model achieved 
96.94% accuracy, while the last model achieved 93.98% 
accuracy. The hyperparameter tuning process was replicated 
from previous research on YOLOv3 scenario 2 to improve 
accuracy. This resulted in a higher accuracy rate for the best 
model at 98.40% and 95.78% for the last model, compared to 
scenario 1. 

In previous studies, the YOLOv3 algorithm was replicated 
in scenarios 1 and 2. Now, it's time to evaluate the results of 
the YOLOv4 algorithm. It's worth noting that YOLOv4 
scenario 1 achieved better accuracy results than YOLOv3 
scenario 2, with the best model reaching 98.69% and the last 
model reaching 96.95%. Therefore, it's necessary to run 
YOLOv4 scenario 2 to compare its results. 

TABLE V.  RESULTS OF ACCURACY, TP, FP, AND FN VALUES IN 
YOLOV4. 

Algorithm Scheme Epoch MAP TP FP FN 

YOLOv4 1 1500 98,69% 756 65 21 

YOLOv4 1 6000 96,95% 753 56 24 

YOLOv4 2 2200 99,01% 756 79 21 

YOLOv4 2 6000 96,63% 757 60 20 

YOLOv4 3 5200 99,02% 761 66 16 

YOLOv4 3 6000 98,79% 752 63 25 

YOLOv4 4 4900 98,99% 735 63 22 

YOLOv4 4 6000 98,71% 749 63 28 

In scenario 2 of YOLOv4, the best model has shown an 
increase in accuracy compared to scenario 1, achieving 
99.01%. However, the last model experienced a decrease of 
96.63%. The training process will include data augmentation 
in each algorithm's remaining initial scenario plans to improve 
the results. The goal is to achieve an optimal model outcome. 

After implementing data augmentation, the YOLOv4 
scenario 3 algorithm showed a significant improvement in the 
best model's performance, with a 99.02% increase compared 
to the previous scenario. However, in YOLOv4 scenario 4, 

both models showed a decrease in performance compared to 
YOLOv4 scenario 3, with the best model achieving 98.99% 
and the last model achieving 98.71%. This indicates that 
YOLOv4 scenario 3 with augmented data had the highest 
performance among the four scenarios. The classification 
reports for YOLOv3 and YOLOv4 are presented in Tables VI 
and Table VII, respectively. 

TABLE VI.  RESULTS OF PRECISION, RECALL, F-1 SCORE, QUALITY, 
AND PROCESSING TIME IN YOLOV3. 

Algorithm Scheme Precision Recall 
F1-

Score 
Quality 

YOLOv3 1 92,60% 94,85% 93,77% 88,26% 

YOLOv3 1 93,14% 92,66% 92,90% 86,75% 

YOLOv3 2 92,24% 96,40% 94,27% 89,17% 

YOLOv3 2 95,87% 95,50% 95,68% 91,72% 

YOLOv3 3 95,10% 37,45% 53,74% 36,74% 

YOLOv3 3 96,50% 17,76% 30,00% 17,65% 

YOLOv3 4 91,43% 24,71% 38,91% 24,15% 

YOLOv3 4 85,00% 2,19% 4,27% 2,18% 

TABLE VII.  RESULTS OF PRECISION, RECALL, F-1 SCORE, QUALITY, 
AND PROCESSING TIME IN YOLOV4. 

Algorithm Scheme Precision Recall 
F1-

Score 
Quality 

YOLOv4 1 92,08% 97,30% 94,62% 89,79% 

YOLOv4 1 93,08% 96,91% 94,96% 90,40% 

YOLOv4 2 90,54% 97,30% 93,80% 88,32% 

YOLOv4 2 92,66% 97,43% 94,98% 90,44% 

YOLOv4 3 92,02% 97,94% 94,89% 90,27% 

YOLOv4 3 92,27% 96.78% 94,47% 89,52% 

YOLOv4 4 92,11% 97,09% 94,53% 89,63% 

YOLOv4 4 92,24% 96,40% 94,27% 89,17% 

Upon thorough analysis of the YOLOv4 results, we have 
successfully replicated YOLOv3 hyperparameter tuning 
scenarios 1 and 2 into scenarios 3 and 4, respectively, utilizing 
the same dataset post-augmentation. However, it has come to 
our attention that scenarios 3 and 4 exhibited lower accuracy 
than the original scenarios before augmentation. The best 
model in scenario 3 achieved an accuracy of 81.15%, while 
the last model reached 60.34%. On the other hand, scenario 4 
produced a best model accuracy of 70.49% and a previous 
model accuracy of 22.37%. 

The model's performance can be controlled and optimized 
within predefined boundaries by effectively tuning 
hyperparameters. In both YOLOv3 scenario two and 
YOLOv4 scenario three, the top-performing models were 
identified based on their exceptional accuracy and recall 
values, outperforming all other scenarios. 

H. Detection Model Testing Results 

The final step is choosing and evaluating the top-
performing model among all YOLOv4 scenarios to detect car 
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objects. The testing data set comprises selected samples from 
the aerial cars data set. These samples share similar traits with 
the training and validation data sets but have never been 
utilized during the training or validation phases, making them 
unseen data. In scenario 2 of the YOLOv3 model, the testing 
data successfully detects a car with an indication of its 
presence through a labeled bounding box. Fig. 6 displays the 
relevant test results. 

 
Fig. 6. The results of testing the YOLOv3 detection model in scenario 2 

Fig. 7 displays the test results from the YOLOv4's top 
model in scenario 3, where a car label and its bounding box 
indicate its detection in the testing data. 

 
Fig. 7. The results of testing the YOLOv4 detection model in scenario 3 

V. CONCLUSION 

After conducting numerous hyperparameter tuning 
scenarios, the YOLOv4 algorithm was implemented as a car 
detection system on unmanned aerial vehicle images, 
achieving a remarkable accuracy rate of 99.02% in the best 
model scenario 3 YOLOv4. Moreover, we replicated the 
hyperparameter tuning from previous research on YOLOv3 
and achieved the highest accuracy value in the best model 
scenario 2, with a value of 98.40%. Our detection model table 
analysis revealed that YOLOv4 experienced an increase in 
accuracy after data augmentation, whereas YOLOv3's 
accuracy decreased. We recommend replicating the 
experiment with some modifications to hyperparameter 
tuning and adding new data through data augmentation 
techniques to further enhance our findings. This will provide 
valuable insights into the patterns of accuracy increase and 
decrease in general for YOLOv3 and YOLOv4 after applying 
hyperparameter tuning and data augmentation. 
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