
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

Multipath Routing Implementation in SD-IoT Network Using

OpenFlow-based Routing Metrics

Muhammad Daffa Atthariq a, Rizky Fauzi Ari Hidayat a, Medina Kaulan Sadida a, Lailis Syafa’ah b,*,

Fauzi Dwi Setiawan Sumadi a
a Informatics Department, University of Muhammadiyah Malang, Malang, 65145, Indonesia

b Electrical Engineering Department, University of Muhammadiyah Malang, Malang, 65145, Indonesia

Corresponding author: *lailis@umm.ac.id

Abstract— The implementation growth of the Internet of Things (IoT) may increase the complexity of the data transmission process

between smart devices. The route generation process between available nodes on the network will burden the intermediary node. One

of the possible solutions for resolving the problem is the integration of Software Defined Networks and IoT (SD-IoT) to provide network

automation and management. The separation of networking control and data forwarding functions may provide a multipath delivery

path between each node in the IoT environment. In addition, the controller can directly extract the resource usage of the intermediary

devices, which can be utilized as the routing metric variable in order to maintain the resource utilization on the intermediary devices.

Instead of using traditional routing, this paper aims to develop multipath routing based on Deep First Search (DFS) and Dijkstra

algorithms for acquiring an efficient path using OpenFlow-based routing metrics. The traffic monitoring module delivered the metrics

extraction process, which obtained the variables using Port and Aggregate Flow Statistic features. The metrics calculation aimed to

provide the multipath, which was constructed based on switches resource usage. Each selected path was chosen based on the smallest

cost and probability provided by the group table feature in OpenFlow. The results showed that the Dijkstra algorithm could create the

multipath more swiftly than DFS with a time difference of 0.6 s. The Quality of Service (QoS) results also indicated that the proposed

routing metric variables could maintain the transmission process efficiently.

Keywords— Multipath routing; SDN; IoT; OpenFlow; routing metric.

Manuscript received 28 Feb. 2023; revised 8 Mar. 2023; accepted 7 Apr. 2023. Date of publication 30 Jun. 2023.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

IoT has proliferated in recent years. IoT integrates sensors,

embedded computing, and communication technologies to

expand internet connectivity in sharing data, remote control,

or sensing [1], [2]. However, IoT has limitations in processing

the formation of the delivery path due to its complexity and

limited computing resources, thus slowing down the path

formation and affecting the data transmission process [3].

An alternative solution can be applied in implementing

multipath routing in IoT because the routing model can be
used to distribute traffic on the formed paths. Multipath

routing is also more efficient than single-path routing by

implementing load balancing. Routers can divide traffic well

and have multiple paths in multipath routing, improving

network performance, security, and reliability because

multipath routing makes full use of network resources [4].

However, the application of multipath routing in IoT has a

problem that requires significant computing resources [5], [6].

Given the problem of limited resource computing on IoT, it is
necessary to have an integration process with Software

Defined Network (SDN) architecture, commonly referred to

as SD-IoT, as a potentially feasible solution to strengthen

management and control capabilities on IoT networks.

SDN is an ideal new paradigm for centralized management

processes on a computer network because SDN is dynamic

and efficient. SDN can improve network elasticity and

scalability, a fundamental characteristic in large-scale IoT

applications. Effectively the control plane is separated from

the data plane and implements a centralized management

process on the controller node [7]. IoT can take advantage of
SDN to have centralized control, network device abstraction,

and flexibility [8], [9]. The SD-IoT controller can be easily

programmed according to the needs of the network

administrators due to the application-based configuration

model [8]. This scheme may allow the implementation of

511

JOIV : Int. J. Inform. Visualization, 7(2) - June 2023 511-516

multipath routing that runs automatically. Implementing

multipath routing and integrating SDN with IoT requires the

OpenFlow protocol so that the control plane can communicate

with the data plane [10]. Through the commands defined in

OpenFlow, the multipath routing algorithm can define routing

metrics variables by focusing on the resource efficiency for

each device.

Several studies have been conducted to investigate the

application of the multipath routing model on SDN and SD-

IoT architectures. Rhamdani et al. [11] applied Multipath
Routing to SDN by integrating the Equal-Cost Multipath

Routing (ECMP) scheme and the modified Dijkstra's

Algorithm to find the shortest path. The results showed that

the proposed algorithm takes as much as 1 ms in route

selection. The algorithm developed by the researcher is also

able to play an effective role in the transmission process that

is sensitive to the Quality of Service (QoS) variables such as

video streaming. Ahmed et al. [12] performed research to

overcome difficulties in identifying flows that passed through

the IoT network because there were devices that played the

role of controllers and devices that played the role of flows
using a method called Collaborative Flow-Identification

Mechanism (CFIM). CFIM identifies flows that pass through

the IoT network by collecting information from devices that

play the flow role and sending that information to devices that

play the controller role. In addition, CFIM also implements a

decision-making mechanism that can make optimal decisions

in identifying flows that pass through the IoT network. CFIM

is expected to increase efficiency in identifying flows passing

through the IoT network and can be used in applications that

require high QoS, such as medical applications.

Ali et al. [13] researched how to effectively place
controllers in SD-IoT networks to improve network

performance and reduce delays using a controller placement

method based on a genetic algorithm called Effective

Controller Placement (ECP). This algorithm uses the concept

of fitness function to evaluate network performance and find

the most effective location to place the controller. In addition,

the ECP algorithm also implements dynamic traffic control to

control the number of data packets allowed to enter the

network and reduce delay. This research also uses simulation

to test the ECP method and shows that implementing this

method can improve network performance and reduce delay

compared to existing controller placement methods. Modi et
al. [14] developed an algorithm based on Host-limited and

link-limited flows in the Data Center Networks (DCN)

management process. The results obtained by the researchers

indicate that the proposed algorithm has a level of

effectiveness and efficiency that is far superior to the Dijkstra

and Hedera algorithms. The researcher wishes to apply Deep

Learning (DL) in the network management process in the next

stage.

Zhong et al. [15] also discovered that the SD-IoT controller

could not meet the large-scale networks' enormous data flow

requirements. The researcher studied data plane load
balancing problems in a Software Defined Large-scale

Network. The researcher examines the controller pool's

vertical structure for the SD-IoT's control plane, including the

controllers (main controllers) of the main control layer and the

controllers (primary controllers) of the basic control layer.

Then, the author proposes a dynamic core controller

balancing algorithm based on an election mechanism and a

dynamic base controller load balancing algorithm based on a

balanced delay model. A similar subsequent study [16] has

research on multipath routing in SDN networks which is

handled and completed under the OpenFlow protocol, which

uses the Ryu controller to implement SDN networks. In the

simulation results, the Depth First Search (DFS) Algorithm

gives superior results compared to the Breadth First Search

(BFS) Algorithm in terms of Round-Trip Time (RTT), delay,

and throughput. From the simulation results, the researchers
validated the QoS improvement for SDN architecture in local

area networks. Syaifuddin et al. [17] applied multipath

routing, which was implemented on SDN. The researcher

implemented a modified DFS and Dijkstra multipath routing

algorithm. In the comparison results, it can be concluded that

the performance of the modified DFS multipath algorithm is

better than Dijkstra's multipath algorithm.

Similarly, Chen et al. [18] proposed an aultipath routing

method that utilizes reinforcement learning based on network

state and flow characteristics. The authors concluded that

their method outperformed the current mainstream shortest
path and ECMP algorithm. Aljohani et al. [19] investigated

their proposed method called Multipath Resilient routing

system based on Software Defined Networking

(MPResiSDN) which adopted the Floyd-Warshall algorithm

for finding the multipath resilient route during natural disaster

scenario in smart city. The conclusion stated that the proposed

approach could improve the data delivery under the

experiment scenario better than spanning tree algorithm.

Based on previous research that investigated the

implementation of multipath routing, it could be concluded

that there was no research focused on the implementation of
multipath in the SD-IoT architecture. In addition, the research

that has been done does not focus on the routing model, which

aims to minimize the use of resources on an intermediary

device. Thus, this manuscript is directed to contribute to the

implementation of multipath routing by calculating

OpenFlow-based metric values. In OpenFlow rules,

controllers can quickly get statistical information on resource

usage in an SDN Switch device. The author focuses on taking

advantage of the variables of the average number of received

data, the average of transmitted data, the number of collisions,

and the number of flow rules in an SDN Switch device. These

variables are obtained by requesting statistical data on the
Aggregate Flow and Port Statistics features. The generated

path consists of the preferred route, which is considered to

utilize a small amount of resource usage.

II. MATERIALS AND METHOD

A. Research Topology and Scenario

The hardware specification that had been used to run SD-

IoT network emulation in this study utilized a computer with

the Ubuntu 20.04 LTS Operating System (OS), which had a
specification of an Intel® Core™ i5-10400 CPU @ 2.90GHz,

8 GB memory (RAM), and 240 GB of Solid State Drive

(SSD) storage space. The software needed to support the

success of this research is the Mininet emulation system [20]

with a network simulation model using a fat-tree topology,

Ryu controller [21] to apply the DFS Multipath algorithm [16]

and Dijkstra Multipath [22] algorithm, and Wireshark which

512

used to observe the network traffic through QoS parameters

[23] including throughput, delay, jitter, and packet loss. Fat-

Tree topology, as depicted in Fig. 1, was used because it had

several variations of paths with branching forms like a tree

which was very effective for applying the multipath routing

concept.

The experiment carried out in this study was based on

emulation using Mininet and RYU. Mininet was used as a

network topology emulator, while RYU was used as a

controller. In this study, several tests were carried out using
two different algorithms, namely the DFS and Dijkstra

multipath, and also using three different protocols, namely

Message Queuing Telemetry Transport (MQTT), Constrained

Application Protocol (CoAP), and Hypertext Transport

Protocol (HTTP) [24], [25]. The list of tested variables to

determine the effectiveness of the algorithm development

composes path discovery, path generation time, and testing

based on QoS variables (bandwidth, throughput, delay, jitter,

and packet loss) [23].

The path discovery scenario was carried out by sending

Internet Control Message Protocol (ICMP) packets [26] from
h1 as a client to h2 role as a server to find all possible delivery

paths. The path generation time scenario determines the

average time required for the two algorithms to find the path.

Then the bandwidth testing scenario was performed by

manual calculations on the Wireshark application in

Kilobytes (KB). The QoS scenario, namely throughput, delay,

jitter, and packet loss, was done by turning one host into a

server (h2) while another host became a client (h1). With the

same pattern, the values of these variables were extracted

from the transmitted data using HTTP, MQTT, and CoAP

packets received on the server side using Wireshark [27].

Fig. 1 Emulation topology

B. Openflow Matrics for Multipath Routing

The design of the system that has been used in this study is

depicted in the block diagram in Fig. 2. On the left side of the

block diagram is a network topology created with a mininet

emulator, while on the right side is the mechanism for running

the RYU controller on the SD-IoT network. In the process of

determining the delivery path, the first step performed by the

controller is summarizing topology information, including

links and connectivity between OpenFlow switches when the
network is initializing or if there are new devices connected

in the topology. Next, the traffic monitoring module extracts

routing metric information from Port Statistics, including the

average number of transmitted packets, received packets, and

collisions.

Fig. 2 System’s block diagram

In addition, other information is obtained from the

Aggregate Flow statistics feature, which contains flow rules

count. Then the path computation module is enabled to apply

the routing algorithms (DFS and Dijkstra) in determining the

three paths that will be used in the data transmission process.

When a path has been found via the path computation module,

the path installation module will be executed to send the

OFPT_FLOW_MOD instruction to install a flow rule with a
group table type based on the previously generated path on

each switch. Subsequently, the data transmission on an SD-

IoT network can already be executed.

This study uses a path assessment matrix as the total path

weight described in equation (1).

����� � ��∈	
��
� �
�_���
��
�

�_����
���
�

�
�_���
��
�

�_����
���
�

� ����������
� � ����������
�

(1)

From equation (1) above, pw(p) states the path weight,

which is the value of the addition operation of several

variables, including ew(e), stating the edge weight obtained

from the topology module in the form of bandwidth capacity,

rx_bytes(e) stating the total bytes received divided by

rx_packets(e) representing the total packets received,

tx_bytes(e) representing the total bytes sent divided by

tx_packets(e) representing the total packets sent, flowcount(e)
representing the number of flow rules in an SDN switch

device, and collision(e) representing the number of collisions

on a switch. The greater the average value of incoming and

transmitted packets, flowcount, and collisions on an SDN

switch device, the smaller the possibility of the switch being

selected in the delivery path due to the large traffic load on

the device. The pseudocode of the routing metric calculation

formula used in this study is presented in Fig. 3.

1

2

3

4

5

6

7

8

9

10

11

12

13

Function Routing Metric Calculation

get_link_cost(self, s1, s2)

 #bandwidth calculation between two switches using topology module

 set e1 to self.adjacency[s1][s2]

 set e2 to self.adjacency[s2][s1]

 set bl to min(self.bandwidths[s1][e1],self.bandwidths[s2][e2])

 set bc to reference_bw/bl

 #port statistic calculation

 set sc to min(self.statistic[s1][e1],self.statistic[s2][e2])

 #aggregate flow statics provides the flow count

 set fc to min(self.flow_counting[s1],self.flow_counting[s2])

 set ew to bc + sc + fc

 return ew

End get_link_cost()

Fig. 3 Pseudocode of metric routing calculation

513

C. Openflow Group Table for Multipath Action

Multipath routing can be implemented in SD-IoT networks

using the OpenFlow protocol and Fat-Tree topology because

the Fat-Tree topology has many paths that can be used as data
transmission scenarios [28]. In an SDN network, the

controller establishes a Transport Layer Security Protocol

(TLS) connection with each switch where the switch, as a data

plane, installs the flow rules in the flow table and group table

so that the controller can control the data transmission

path[29]. A detailed example of the group table component

can be seen in Table 1 to handle packet transmission with

group_id=2644423182. The switch can select bucket actions

based on the path weights calculated during the path

calculation process. In Table 1, the switch sends packets

through ports 2, 4, and 5. The probability on each port is 0.8
for port 2, 0.15 for port 4, and 0.05 for port 5. The probability

value is adjusted based on the final cost for each generated

delivery path formed in the path calculation process. A weight

of 0.8 is the highest probability of being chosen by the switch,

meaning that the path has the lowest cost among other paths.

Based on the OpenFlow rules, the bucket weight variable

becomes a benchmark in the selection of paths using the group

type method as select.

TABLE I

THE GROUP TABLE EXAMPLE

Group_identifier Group_type Action_buckets

group_id=
2644423182

Select bucket_weight=80,
actions=output:2

bucket_weight=15,
actions=output:4
bucket_weight=5,

actions=output:5

After the delivery path is found from h1 to h2, the path is

installed on each switch. By default, Openflow will give the

switch device the freedom to choose actions that are defined

using the scheduling algorithms that are already available.

However, by defining bucket_weight, the probability of path

selection is based on the value specified for this variable.

III. RESULTS AND DISCUSSION

A. Path Discovery Results

The results of the path discovery from h1 to h2 using the

DFS and the Dijkstra multipath algorithm, which are carried

out five times, are presented in Tables 2 and 3. Based on five

trials using the multipath DFS algorithm, a path was chosen

with the smallest cost value in the 5th experiment with paths

[13, 6, 2, 3, 11, 20] and a cost of 1206.88. The alternative path

was path [13, 6, 2, 8, 3, 11, 20] with a cost value of 1440.84,

and path [13, 6, 2, 9, 3, 11, 20] with a cost value of 1444.02.

Meanwhile, from five trials using the Dijkstra multipath

algorithm, there was a path with the smallest cost value in the

4th experiment with path [13, 6, 2, 3, 11, 20] and a cost value
of 1263.05. Other alternative paths were on the path [13, 6, 2,

8, 3, 11, 20] with a cost value of 1498.42 and path [13, 5, 1,

2, 3, 11, 20] with a cost value of 1521.09.

TABLE II

THE RESULTS OF THE PATH DISCOVERY ON THE DFS AND DIJKSTRA

MULTIPATH ALGORITHM

Algorithm
Experiment

Number
Path 1 Path 2 Path 3

DFS

Multipath

1

[13, 6, 2,

3, 11,

20]

[13, 6, 2,

8, 3, 11,

20]

[13, 6, 2,

9, 3, 11,

20]

2

[13, 6, 2,

3, 11,

20]

[13, 6, 2,

8, 3, 11,

20]

[13, 5, 1,

2, 3, 11,

20]

3

[13, 6, 2,

3, 11,

20]

[13, 6, 2,

8, 3, 11,

20]

[13, 6, 2,

9, 3, 11,

20]

4

[13, 6, 2,

3, 11,

20]

[13, 6, 2,

3, 4, 12,

20]

[13, 6, 2,

9, 3, 11,

20]

5

[13, 6, 2,

3, 11,

20]

[13, 6, 2,

8, 3, 11,

20]

[13, 6, 2,

9, 3, 11,

20]

Dijkstra

Multipath

1

[13, 6, 2,

3, 11,

20]

[13, 6, 2,

9, 3, 11,

20]

[13, 6, 2,

8, 3, 11,

20]

2

[13, 6, 2,

3, 11,

20]

[13, 5, 1,

2, 3, 11,

20]

[13, 6, 2,

8, 3, 11,

20]

3

[13, 6, 2,

3, 11,

20]

[13, 6, 2,

8, 3, 11,

20]

[13, 6, 2,

9, 3, 11,

20]

4

[13, 6, 2,

3, 11,

20]

[13, 6, 2,

8, 3, 11,

20]

[13, 5, 1,

2, 3, 11,

20]

5

[13, 6, 2,

3, 11,

20]

[13, 6, 2,

9, 3, 11,

20]

[13, 5, 1,

2, 3, 11,

20]

TABLE III

THE RESULTS OF THE PATH DISCOVERY COST ON THE DFS AND DIJKSTRA

MULTIPATH ALGORITHM

Algorithm
Experiment

Number
Path 1 Path 2 Path 3

DFS
Multipath

1 1229.81 1466.54 1481.00
2 1314.52 1552.12 1572.22
3 1213.55 1439.96 1454.42
4 1223.35 1457.81 1460.72
5 1206.88 1440.84 1444.02

Average 1237.62 1237.62 1482.48

Dijkstra
Multipath

1 1320.44 1568.62 1583.20
2 1333.09 1583.99 1598.33
3 1332.51 1590.12 1592.46
4 1263.05 1498.42 1521.09
5 1296.31 1547.33 1551.53

Average 1309.08 1557.70 1569.32

B. Path Generation Time Results

The results of the path generation time for the DFS and

Dijkstra's multipath algorithm are presented in Tables 4 and

5. The evaluation was done to determine the time required for

the path-searching algorithm that has been developed to be

able to find all paths in the Fat-Tree network topology. The

results of time readings from each experiment had very

different values. This was due to the unstable nature of the

emulation using mininet [30]. The average path generation
time from the five trials on the DFS multipath algorithm was

450,597 ms, and the Dijkstra multipath algorithm was

1087,962 ms. The multipath DFS algorithm had a much

different average time difference from the multipath Dijkstra

algorithm.

514

TABLE IV

THE RESULTS OF THE PATH GENERATION TIME ON THE DFS MULTIPATH

ALGORITHM

Experiment

Number

Path Generation Time

(ms)

Average Time

(ms)

1 443.095
2 644.23

3 181.574 450.597
4 723.966
5 260.12

TABLE V

THE RESULTS OF THE PATH GENERATION TIME ON THE DIJKSTRA MULTIPATH

ALGORITHM

Experiment

Number

Path Generation Time

(ms)

Average Time

(ms)

1 1081.162
2 1001.268
3 1014.267 1087.962

4 1320.178
5 1022.934

In accordance with the results in research [17], the results

of the execution time testing carried out on the same three

algorithms, namely the modified DFS multipath algorithm

was 0.0903 ms, the multipath DFS algorithm was 0.0858 ms,

and the Dijkstra multipath algorithm was 0.901 ms. The test

results in these two studies showed that the multipath DFS

algorithm had a faster path generation time than the Dijkstra

multipath algorithm.

C. QoS Extraction Results

The bandwidth variable was extracted by statistical

analysis on the network being tested by collecting statistical

measurement data on Wireshark, such as the number of

packets received in bytes. The results of data extraction were

converted into KiloBytes (KB). Based on the results listed in

Table 6, it can be seen that the results of bandwidth testing

using the MQTT protocol on the DFS and Dijkstra multipath

algorithms resulted in 825.372. While bandwidth testing

using CoAP and HTTP protocols has the same results at 708

KB. Each protocol produced similar results for both
algorithms.

TABLE VI

THE BANDWIDTH RESULTS

Algorithm
Bandwidth Average (KB)

MQTT CoAP HTTP

DFS Multipath 825.372 708 708
Dijkstra Multipath 825.372 708 708

The other QoS experiment was the throughput variable.

The emulation was carried out to know a network's ability in

actual data transfer. Throughput is a calculation of the value

of a packet that has been successfully received at the

destination for a certain period and divided by the length of

the time interval. The throughput calculation was manually

processed by taking Wireshark's statistical data in bytes and

period (s). The results of throughput testing using three

different protocols that have been carried out are presented in
Table 7. The obtained values showed the same pattern for

each protocol. MQTT, CoAP, and HTTP protocols had the

same throughput value in each algorithm.

TABLE VII

THE THROUGHPUT RESULTS

Algorithm
Throughput Average (KB)

MQTT CoAP HTTP

DFS Multipath 81.60885 59.37517 48.1166
Dijkstra Multipath 81.60983 59.37401 48.1146

The third QoS test was delay and jitter, which was done by

extracting the reception time between the received packets

using the Wireshark application, which was then processed

manually using the delay and jitter formula. The delayed test

was also carried out using three different protocols, MQTT,

CoAP, and HTTP, within five trials, and 100 packets were

accumulated for each trial. The results of calculating the 100

packets are calculated on an average, as presented in Table 8.
Jitter testing was performed to determine the delay variation

between data transmission on the network that could occur

due to the influence of traffic load on the network itself. Jitter

testing was done by using the data from the calculation of the

delay, and then all the resulting values were divided by the

number of packets received. Referring to the delay and jitter

values, all tested protocols produced relatively the same

average values. However, there was a tendency for better

delay variations in the DFS algorithm because the

preprocessing (path generation time) was not too significant.

TABLE VIII

THE DELAY AND JITTER RESULTS
Algorithm MQTT CoAP HTTP

Delay

Average

Jitter

Average

Delay

Average

Jitter

Average

Delay

Average

Jitter

Average

DFS

Multipath
1.00136 0.00012 1.17234 0.00379 1.48629 2.97236

Dijkstra

Multipath
1.00135 0.00013 1.01026 0.11952 1.48635 2.97247

Packet loss testing was calculated from the percentage of

transmitted packets that were not received by the server

described in Table 9. Based on the test results, both algorithms

can effectively determine the path, as evidenced by the packet

loss value equal to 0%.

TABLE IX

THE PACKET LOSS RESULTS

Algorithm
Packet Loss Average (%)

MQTT CoAP HTTP

DFS Multipath 0 0 0

Dijkstra Multipath 0 0 0

IV. CONCLUSION

Significant results were obtained on the path discovery

experiment's path generation time variable between the DFS

and Dijkstra multipath algorithm. In the QoS variable, the

value obtained gives the same pattern in both algorithms

because the generated path for sending data on the network is

approximately the same as the overall multipath routing
algorithms. From the results of the path discovery using two

different algorithms, the DFS multipath algorithm can find

delivery paths faster than Dijkstra. This is because the path

search process using the DFS algorithm is carried out by

expanding to nodes in a graph.

After the node expansion stage, it is followed by a

backtracking process to get the entire path from the source

node to the destination. In Dijkstra's algorithm, the path-

searching process uses a greedy strategy where each traversed

515

node is selected based on the smallest weight between the

nodes selected in the path and other nodes not selected to

produce the shortest path. From the results that have been

analyzed, it can be concluded that multipath DFS is superior

to Dijkstra's multipath algorithm when applied to SD-IoT

with reference to the path generation time value. In addition,

processing delay in calculating routing metrics does not

impact the delay or packet loss value in the data transmission

process. In future research, the authors plan to develop a

routing model based on Artificial Intelligence (AI) that can
automatically select a routing algorithm according to the real-

time conditions on the network.

ACKNOWLEDGMENT

The authors are grateful to the University of

Muhammadiyah Malang and the UMM Informatics

Laboratory for supporting the implementation of this

research.

REFERENCES

[1] N. Hossein Motlagh, M. Mohammadrezaei, J. Hunt, and B. Zakeri,

“Internet of Things (IoT) and the Energy Sector,” Energies (Basel),

vol. 13, no. 2, p. 494, Jan. 2020, doi: 10.3390/en13020494.

[2] S. N. Swamy and S. R. Kota, “An Empirical Study on System Level

Aspects of Internet of Things (IoT),” IEEE Access, vol. 8, pp. 188082–

188134, 2020, doi: 10.1109/ACCESS.2020.3029847.

[3] M. Pang, X. Yao, and M. Geng, “A computing resource scheduling

strategy of massive IoT devices in the mobile edge computing

environment,” The Journal of Engineering, vol. 2021, no. 6, pp. 348–

357, Jun. 2021, doi: 10.1049/tje2.12040.

[4] R. Thamilselvan, K. T. Selvi, R. R. Rajalaxmi, and E. Gothai,

“Multipath Routing of Elephant Flows in Data Centers Based on

Software Defined Networking,” Int J Eng Adv Technol, vol. 9, no. 2,

pp. 2714–2717, Dec. 2019, doi: 10.35940/ijeat.B3258.129219.

[5] G. A. Mutiara, N. Suryana, and O. Mohd, “WSN nodes power

consumption using multihop routing protocol for illegal cutting

forest,” TELKOMNIKA (Telecommunication Computing Electronics

and Control), vol. 18, no. 3, p. 1529, Jun. 2020, doi:

10.12928/telkomnika.v18i3.14844.

[6] P. A. Y. and R. Balakrishna, “Implementation of optimal solution for

network lifetime and energy consumption metrics using improved

energy efficient LEACH protocol in MANET,” TELKOMNIKA

(Telecommunication Computing Electronics and Control), vol. 17, no.

4, p. 1758, Aug. 2019, doi: 10.12928/telkomnika.v17i4.12004.

[7] N. Sultana, N. Chilamkurti, W. Peng, and R. Alhadad, “Survey on

SDN based network intrusion detection system using machine learning

approaches,” Peer Peer Netw Appl, vol. 12, no. 2, pp. 493–501, Mar.

2019, doi: 10.1007/s12083-017-0630-0.

[8] M. M. Azmi and F. D. S. Sumadi, “Low-Rate Attack Detection on SD-

IoT Using SVM Combined with Feature Importance Logistic

Regression Coefficient,” Kinetik: Game Technology, Information

System, Computer Network, Computing, Electronics, and Control,

Jun. 2022, doi: 10.22219/kinetik.v7i2.1405.

[9] W. D. Nanda and F. D. S. Sumadi, “LRDDoS Attack Detection on SD-

IoT Using Random Forest with Logistic Regression Coefficient,”

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no.

2, pp. 220–226, Apr. 2022, doi: 10.29207/resti.v6i2.3878.

[10] R. Wazirali, R. Ahmad, and S. Alhiyari, “SDN-OpenFlow Topology

Discovery: An Overview of Performance Issues,” Applied Sciences,

vol. 11, no. 15, p. 6999, Jul. 2021, doi: 10.3390/app11156999.

[11] F. Rhamdani, N. A. Suwastika, and M. A. Nugroho, “Equal-Cost

Multipath Routing in Data Center Network Based on Software

Defined Network,” in 2018 6th International Conference on

Information and Communication Technology (ICoICT), May 2018,

pp. 222–226. doi: 10.1109/ICoICT.2018.8528730.

[12] N. Ahmed and S. Misra, “Collaborative Flow-Identification

Mechanism for Software-Defined Internet of Things,” IEEE Internet

Things J, vol. 9, no. 5, pp. 3457–3464, Mar. 2022, doi:

10.1109/JIOT.2021.3099822.

[13] J. Ali and B. Roh, “An Effective Approach for Controller Placement

in Software-Defined Internet-of-Things (SD-IoT),” Sensors, vol. 22,

no. 8, p. 2992, Apr. 2022, doi: 10.3390/s22082992.

[14] T. Modi and P. Swain, “FlowDCN: Flow Scheduling in Software

Defined Data Center Networks,” in 2019 IEEE International

Conference on Electrical, Computer and Communication

Technologies (ICECCT), Feb. 2019, pp. 1–5. doi:

10.1109/ICECCT.2019.8869180.

[15] X. Zhong, L. Zhang, and Y. Wei, “Dynamic Load-Balancing Vertical

Control for a Large-Scale Software-Defined Internet of Things,” IEEE

Access, vol. 7, pp. 140769–140780, 2019, doi:

10.1109/ACCESS.2019.2943173.

[16] Md. S. Hossen, Md. H. Rahman, Md. Al-Mustanjid, Md. A. Shakil

Nobin, and Md. A. Habib, “Enhancing Quality of Service in SDN

based on Multi-path Routing Optimization with DFS,” in 2019

International Conference on Sustainable Technologies for Industry

4.0 (STI), Dec. 2019, pp. 1–5. doi: 10.1109/STI47673.2019.9068057.

[17] S. Syaifuddin, M. F. Azis, and F. D. S. Sumadi, “Comparison Analysis

of Multipath Routing Implementation in Software Defined Network,”

Kinetik: Game Technology, Information System, Computer Network,

Computing, Electronics, and Control, May 2021, doi:

10.22219/kinetik.v6i2.1228.

[18] C. Chen, F. Xue, Z. Lu, Z. Tang, and C. Li, “RLMR: Reinforcement

Learning Based Multipath Routing for SDN,” Wirel Commun Mob

Comput, vol. 2022, pp. 1–12, Feb. 2022, doi: 10.1155/2022/5124960.

[19] S. L. Aljohani and M. J. F. Alenazi, “MPResiSDN: Multipath Resilient

Routing Scheme for SDN-Enabled Smart Cities Networks,” Applied

Sciences, vol. 11, no. 4, p. 1900, Feb. 2021, doi:

10.3390/app11041900.

[20] D. Y. Setiawan, S. Naning Hertiana, and R. M. Negara, “6LoWPAN

Performance Analysis of IoT Software-Defined-Network-Based

Using Mininet-Io,” in 2020 IEEE International Conference on Internet

of Things and Intelligence System (IoTaIS), Jan. 2021, pp. 60–65. doi:

10.1109/IoTaIS50849.2021.9359714.

[21] Md. T. Islam, N. Islam, and Md. al Refat, “Node to Node Performance

Evaluation through RYU SDN Controller,” Wirel Pers Commun, vol.

112, no. 1, pp. 555–570, 2020, doi: 10.1007/s11277-020-07060-4.

[22] S. Julius Fusic, P. Ramkumar, and K. Hariharan, “Path planning of

robot using modified dijkstra Algorithm,” in 2018 National Power

Engineering Conference (NPEC), Mar. 2018, pp. 1–5. doi:

10.1109/NPEC.2018.8476787.

[23] M. Singh and G. Baranwal, “Quality of Service (QoS) in Internet of

Things,” in 2018 3rd International Conference On Internet of Things:

Smart Innovation and Usages (IoT-SIU), Feb. 2018, pp. 1–6. doi:

10.1109/IoT-SIU.2018.8519862.

[24] D. Silva, L. I. Carvalho, J. Soares, and R. C. Sofia, “A Performance

Analysis of Internet of Things Networking Protocols: Evaluating

MQTT, CoAP, OPC UA,” Applied Sciences, vol. 11, no. 11, p. 4879,

May 2021, doi: 10.3390/app11114879.

[25] N. Nikolov, “Research of MQTT, CoAP, HTTP and XMPP IoT

Communication protocols for Embedded Systems,” in 2020 XXIX

International Scientific Conference Electronics (ET), Sep. 2020, pp.

1–4. doi: 10.1109/ET50336.2020.9238208.

[26] T. Tun, “A Forensics Analysis of ICMP Flooded DDoS Attack using

WireShark,” Transactions on Networks and Communications, vol. 8,

no. 3, pp. 08–15, Jun. 2020, doi: 10.14738/tnc.83.8250.

[27] R. Jawaharan, P. M. Mohan, T. Das, and M. Gurusamy, “Empirical

Evaluation of SDN Controllers Using Mininet/Wireshark and

Comparison with Cbench,” in 2018 27th International Conference on

Computer Communication and Networks (ICCCN), Jul. 2018, pp. 1–

2. doi: 10.1109/ICCCN.2018.8487382.

[28] P. Qiao, X. Wang, X. Yang, Y. Fan, and Z. Lan, “Joint Effects of

Application Communication Pattern, Job Placement and Network

Routing on Fat-Tree Systems,” in Proceedings of the 47th

International Conference on Parallel Processing Companion, Aug.

2018, pp. 1–10. doi: 10.1145/3229710.3229747.

[29] S. H. Mohammed and A. D. Jasim, “Evaluation of Firewall and Load

balance in Fat-Tree Topology Based on Floodlight Controller,”

Indonesian Journal of Electrical Engineering and Computer Science,

vol. 17, no. 3, p. 1157, Mar. 2020, doi: 10.11591/ijeecs.v17.i3.pp1157-

1164.

[30] Y. Ergiz, A. M. Demirtas, and T. Girici, “Joint multipath flow and

layer allocation for scalable video streaming,” Computer Networks,

vol. 191, p. 107995, May 2021, doi: 10.1016/j.comnet.2021.107995.

516

