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Abstract— The implementation growth of the Internet of Things (IoT) may increase the complexity of the data transmission process 

between smart devices. The route generation process between available nodes on the network will burden the intermediary node. One 

of the possible solutions for resolving the problem is the integration of Software Defined Networks and IoT (SD-IoT) to provide network 

automation and management. The separation of networking control and data forwarding functions may provide a multipath delivery 

path between each node in the IoT environment. In addition, the controller can directly extract the resource usage of the intermediary 

devices, which can be utilized as the routing metric variable in order to maintain the resource utilization on the intermediary devices. 

Instead of using traditional routing, this paper aims to develop multipath routing based on Deep First Search (DFS) and Dijkstra 

algorithms for acquiring an efficient path using OpenFlow-based routing metrics. The traffic monitoring module delivered the metrics 

extraction process, which obtained the variables using Port and Aggregate Flow Statistic features. The metrics calculation aimed to 

provide the multipath, which was constructed based on switches resource usage. Each selected path was chosen based on the smallest 

cost and probability provided by the group table feature in OpenFlow. The results showed that the Dijkstra algorithm could create the 

multipath more swiftly than DFS with a time difference of 0.6 s. The Quality of Service (QoS) results also indicated that the proposed 

routing metric variables could maintain the transmission process efficiently.  
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I. INTRODUCTION

IoT has proliferated in recent years. IoT integrates sensors, 

embedded computing, and communication technologies to 

expand internet connectivity in sharing data, remote control, 

or sensing [1], [2]. However, IoT has limitations in processing 

the formation of the delivery path due to its complexity and 

limited computing resources, thus slowing down the path 

formation and affecting the data transmission process [3].  

An alternative solution can be applied in implementing 

multipath routing in IoT because the routing model can be 
used to distribute traffic on the formed paths. Multipath 

routing is also more efficient than single-path routing by 

implementing load balancing. Routers can divide traffic well 

and have multiple paths in multipath routing, improving 

network performance, security, and reliability because 

multipath routing makes full use of network resources [4]. 

However, the application of multipath routing in IoT has a 

problem that requires significant computing resources [5], [6]. 

Given the problem of limited resource computing on IoT, it is 
necessary to have an integration process with Software 

Defined Network (SDN) architecture, commonly referred to 

as SD-IoT, as a potentially feasible solution to strengthen 

management and control capabilities on IoT networks. 

SDN is an ideal new paradigm for centralized management 

processes on a computer network because SDN is dynamic 

and efficient. SDN can improve network elasticity and 

scalability, a fundamental characteristic in large-scale IoT 

applications. Effectively the control plane is separated from 

the data plane and implements a centralized management 

process on the controller node [7]. IoT can take advantage of 
SDN to have centralized control, network device abstraction, 

and flexibility [8], [9]. The SD-IoT controller can be easily 

programmed according to the needs of the network 

administrators due to the application-based configuration 

model [8]. This scheme may allow the implementation of 
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multipath routing that runs automatically. Implementing 

multipath routing and integrating SDN with IoT requires the 

OpenFlow protocol so that the control plane can communicate 

with the data plane [10]. Through the commands defined in 

OpenFlow, the multipath routing algorithm can define routing 

metrics variables by focusing on the resource efficiency for 

each device. 

Several studies have been conducted to investigate the 

application of the multipath routing model on SDN and SD-

IoT architectures. Rhamdani et al. [11] applied Multipath 
Routing to SDN by integrating the Equal-Cost Multipath 

Routing (ECMP) scheme and the modified Dijkstra's 

Algorithm to find the shortest path. The results showed that 

the proposed algorithm takes as much as 1 ms in route 

selection. The algorithm developed by the researcher is also 

able to play an effective role in the transmission process that 

is sensitive to the Quality of Service (QoS) variables such as 

video streaming. Ahmed et al. [12] performed research to 

overcome difficulties in identifying flows that passed through 

the IoT network because there were devices that played the 

role of controllers and devices that played the role of flows 
using a method called Collaborative Flow-Identification 

Mechanism (CFIM). CFIM identifies flows that pass through 

the IoT network by collecting information from devices that 

play the flow role and sending that information to devices that 

play the controller role. In addition, CFIM also implements a 

decision-making mechanism that can make optimal decisions 

in identifying flows that pass through the IoT network. CFIM 

is expected to increase efficiency in identifying flows passing 

through the IoT network and can be used in applications that 

require high QoS, such as medical applications.  

Ali et al. [13] researched how to effectively place 
controllers in SD-IoT networks to improve network 

performance and reduce delays using a controller placement 

method based on a genetic algorithm called Effective 

Controller Placement (ECP). This algorithm uses the concept 

of fitness function to evaluate network performance and find 

the most effective location to place the controller. In addition, 

the ECP algorithm also implements dynamic traffic control to 

control the number of data packets allowed to enter the 

network and reduce delay. This research also uses simulation 

to test the ECP method and shows that implementing this 

method can improve network performance and reduce delay 

compared to existing controller placement methods. Modi et 
al. [14] developed an algorithm based on Host-limited and 

link-limited flows in the Data Center Networks (DCN) 

management process. The results obtained by the researchers 

indicate that the proposed algorithm has a level of 

effectiveness and efficiency that is far superior to the Dijkstra 

and Hedera algorithms. The researcher wishes to apply Deep 

Learning (DL) in the network management process in the next 

stage.  

Zhong et al. [15] also discovered that the SD-IoT controller 

could not meet the large-scale networks' enormous data flow 

requirements. The researcher studied data plane load 
balancing problems in a Software Defined Large-scale 

Network. The researcher examines the controller pool's 

vertical structure for the SD-IoT's control plane, including the 

controllers (main controllers) of the main control layer and the 

controllers (primary controllers) of the basic control layer. 

Then, the author proposes a dynamic core controller 

balancing algorithm based on an election mechanism and a 

dynamic base controller load balancing algorithm based on a 

balanced delay model. A similar subsequent study [16] has 

research on multipath routing in SDN networks which is 

handled and completed under the OpenFlow protocol, which 

uses the Ryu controller to implement SDN networks. In the 

simulation results, the Depth First Search (DFS) Algorithm 

gives superior results compared to the Breadth First Search 

(BFS) Algorithm in terms of Round-Trip Time (RTT), delay, 

and throughput. From the simulation results, the researchers 
validated the QoS improvement for SDN architecture in local 

area networks. Syaifuddin et al. [17] applied multipath 

routing, which was implemented on SDN. The researcher 

implemented a modified DFS and Dijkstra multipath routing 

algorithm. In the comparison results, it can be concluded that 

the performance of the modified DFS multipath algorithm is 

better than Dijkstra's multipath algorithm. 

Similarly, Chen et al. [18] proposed an aultipath routing 

method that utilizes reinforcement learning based on network 

state and flow characteristics. The authors concluded that 

their method outperformed the current mainstream shortest 
path and ECMP algorithm. Aljohani et al. [19] investigated 

their proposed method called Multipath Resilient routing 

system based on Software Defined Networking 

(MPResiSDN) which adopted the Floyd-Warshall algorithm 

for finding the multipath resilient route during natural disaster 

scenario in smart city. The conclusion stated that the proposed 

approach could improve the data delivery under the 

experiment scenario better than spanning tree algorithm. 

Based on previous research that investigated the 

implementation of multipath routing, it could be concluded 

that there was no research focused on the implementation of 
multipath in the SD-IoT architecture. In addition, the research 

that has been done does not focus on the routing model, which 

aims to minimize the use of resources on an intermediary 

device. Thus, this manuscript is directed to contribute to the 

implementation of multipath routing by calculating 

OpenFlow-based metric values. In OpenFlow rules, 

controllers can quickly get statistical information on resource 

usage in an SDN Switch device. The author focuses on taking 

advantage of the variables of the average number of received 

data, the average of transmitted data, the number of collisions, 

and the number of flow rules in an SDN Switch device. These 

variables are obtained by requesting statistical data on the 
Aggregate Flow and Port Statistics features. The generated 

path consists of the preferred route, which is considered to 

utilize a small amount of resource usage. 

II. MATERIALS AND METHOD 

A. Research Topology and Scenario 

The hardware specification that had been used to run SD-

IoT network emulation in this study utilized a computer with 

the Ubuntu 20.04 LTS Operating System (OS), which had a 
specification of an Intel® Core™ i5-10400 CPU @ 2.90GHz, 

8 GB memory (RAM), and 240 GB of Solid State Drive 

(SSD) storage space. The software needed to support the 

success of this research is the Mininet emulation system [20] 

with a network simulation model using a fat-tree topology, 

Ryu controller [21] to apply the DFS Multipath algorithm [16] 

and Dijkstra Multipath [22] algorithm, and Wireshark which 
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used to observe the network traffic through QoS parameters 

[23] including throughput, delay, jitter, and packet loss. Fat-

Tree topology, as depicted in Fig. 1, was used because it had 

several variations of paths with branching forms like a tree 

which was very effective for applying the multipath routing 

concept. 

The experiment carried out in this study was based on 

emulation using Mininet and RYU. Mininet was used as a 

network topology emulator, while RYU was used as a 

controller. In this study, several tests were carried out using 
two different algorithms, namely the DFS and Dijkstra 

multipath, and also using three different protocols, namely 

Message Queuing Telemetry Transport (MQTT), Constrained 

Application Protocol (CoAP), and Hypertext Transport 

Protocol (HTTP) [24], [25]. The list of tested variables to 

determine the effectiveness of the algorithm development 

composes path discovery, path generation time, and testing 

based on QoS variables (bandwidth, throughput, delay, jitter, 

and packet loss) [23].  

The path discovery scenario was carried out by sending 

Internet Control Message Protocol (ICMP) packets [26] from 
h1 as a client to h2 role as a server to find all possible delivery 

paths. The path generation time scenario determines the 

average time required for the two algorithms to find the path. 

Then the bandwidth testing scenario was performed by 

manual calculations on the Wireshark application in 

Kilobytes (KB). The QoS scenario, namely throughput, delay, 

jitter, and packet loss, was done by turning one host into a 

server (h2) while another host became a client (h1). With the 

same pattern, the values of these variables were extracted 

from the transmitted data using HTTP, MQTT, and CoAP 

packets received on the server side using Wireshark [27]. 
 

 
Fig. 1  Emulation topology 

B. Openflow Matrics for Multipath Routing 

The design of the system that has been used in this study is 

depicted in the block diagram in Fig. 2. On the left side of the 

block diagram is a network topology created with a mininet 

emulator, while on the right side is the mechanism for running 

the RYU controller on the SD-IoT network. In the process of 

determining the delivery path, the first step performed by the 

controller is summarizing topology information, including 

links and connectivity between OpenFlow switches when the 
network is initializing or if there are new devices connected 

in the topology. Next, the traffic monitoring module extracts 

routing metric information from Port Statistics, including the 

average number of transmitted packets, received packets, and 

collisions.  

 
Fig. 2  System’s block diagram 

 

In addition, other information is obtained from the 

Aggregate Flow statistics feature, which contains flow rules 

count. Then the path computation module is enabled to apply 

the routing algorithms (DFS and Dijkstra) in determining the 

three paths that will be used in the data transmission process. 

When a path has been found via the path computation module, 

the path installation module will be executed to send the 

OFPT_FLOW_MOD instruction to install a flow rule with a 
group table type based on the previously generated path on 

each switch. Subsequently, the data transmission on an SD-

IoT network can already be executed. 

This study uses a path assessment matrix as the total path 

weight described in equation (1). 
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(1) 

From equation (1) above, pw(p) states the path weight, 

which is the value of the addition operation of several 

variables, including ew(e), stating the edge weight obtained 

from the topology module in the form of bandwidth capacity, 

rx_bytes(e) stating the total bytes received divided by 

rx_packets(e) representing the total packets received, 

tx_bytes(e) representing the total bytes sent divided by 

tx_packets(e) representing the total packets sent, flowcount(e) 
representing the number of flow rules in an SDN switch 

device, and collision(e) representing the number of collisions 

on a switch. The greater the average value of incoming and 

transmitted packets, flowcount, and collisions on an SDN 

switch device, the smaller the possibility of the switch being 

selected in the delivery path due to the large traffic load on 

the device. The pseudocode of the routing metric calculation 

formula used in this study is presented in Fig. 3. 
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Function Routing Metric Calculation 

get_link_cost(self, s1, s2) 

        #bandwidth calculation between two switches using topology module 

        set e1 to self.adjacency[s1][s2] 

        set e2 to self.adjacency[s2][s1] 

        set bl to min(self.bandwidths[s1][e1],self.bandwidths[s2][e2]) 

        set bc to reference_bw/bl 

        #port statistic calculation 

        set sc to min(self.statistic[s1][e1],self.statistic[s2][e2]) 

        #aggregate flow statics provides the flow count 

        set fc to min(self.flow_counting[s1],self.flow_counting[s2]) 

        set ew to bc + sc + fc 

        return ew 

End get_link_cost() 

Fig. 3  Pseudocode of metric routing calculation 
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C. Openflow Group Table for Multipath Action 

Multipath routing can be implemented in SD-IoT networks 

using the OpenFlow protocol and Fat-Tree topology because 

the Fat-Tree topology has many paths that can be used as data 
transmission scenarios [28]. In an SDN network, the 

controller establishes a Transport Layer Security Protocol 

(TLS) connection with each switch where the switch, as a data 

plane, installs the flow rules in the flow table and group table 

so that the controller can control the data transmission 

path[29]. A detailed example of the group table component 

can be seen in Table 1 to handle packet transmission with 

group_id=2644423182. The switch can select bucket actions 

based on the path weights calculated during the path 

calculation process. In Table 1, the switch sends packets 

through ports 2, 4, and 5. The probability on each port is 0.8 
for port 2, 0.15 for port 4, and 0.05 for port 5. The probability 

value is adjusted based on the final cost for each generated 

delivery path formed in the path calculation process. A weight 

of 0.8 is the highest probability of being chosen by the switch, 

meaning that the path has the lowest cost among other paths. 

Based on the OpenFlow rules, the bucket weight variable 

becomes a benchmark in the selection of paths using the group 

type method as select. 

TABLE I 

THE GROUP TABLE EXAMPLE 

Group_identifier Group_type Action_buckets 

group_id= 
2644423182 

Select bucket_weight=80, 
actions=output:2 

bucket_weight=15, 
actions=output:4 
bucket_weight=5, 

actions=output:5 

 

After the delivery path is found from h1 to h2, the path is 

installed on each switch. By default, Openflow will give the 

switch device the freedom to choose actions that are defined 

using the scheduling algorithms that are already available. 

However, by defining bucket_weight, the probability of path 

selection is based on the value specified for this variable. 

III. RESULTS AND DISCUSSION 

A. Path Discovery Results 

The results of the path discovery from h1 to h2 using the 

DFS and the Dijkstra multipath algorithm, which are carried 

out five times, are presented in Tables 2 and 3. Based on five 

trials using the multipath DFS algorithm, a path was chosen 

with the smallest cost value in the 5th experiment with paths 

[13, 6, 2, 3, 11, 20] and a cost of 1206.88. The alternative path 

was path [13, 6, 2, 8, 3, 11, 20] with a cost value of 1440.84, 

and path [13, 6, 2, 9, 3, 11, 20] with a cost value of 1444.02. 

Meanwhile, from five trials using the Dijkstra multipath 

algorithm, there was a path with the smallest cost value in the 

4th experiment with path [13, 6, 2, 3, 11, 20] and a cost value 
of 1263.05. Other alternative paths were on the path [13, 6, 2, 

8, 3, 11, 20] with a cost value of 1498.42 and path [13, 5, 1, 

2, 3, 11, 20] with a cost value of 1521.09. 

 

TABLE II 

THE RESULTS OF THE PATH DISCOVERY ON THE DFS AND DIJKSTRA 

MULTIPATH ALGORITHM 

Algorithm 
Experiment 

Number 
Path 1 Path 2 Path 3 

DFS 

Multipath 

1 

[13, 6, 2, 

3, 11, 

20] 

[13, 6, 2, 

8, 3, 11, 

20] 

[13, 6, 2, 

9, 3, 11, 

20] 

2 

[13, 6, 2, 

3, 11, 

20] 

[13, 6, 2, 

8, 3, 11, 

20] 

[13, 5, 1, 

2, 3, 11, 

20] 

3 

[13, 6, 2, 

3, 11, 

20] 

[13, 6, 2, 

8, 3, 11, 

20] 

[13, 6, 2, 

9, 3, 11, 

20] 

4 

[13, 6, 2, 

3, 11, 

20] 

[13, 6, 2, 

3, 4, 12, 

20] 

[13, 6, 2, 

9, 3, 11, 

20] 

5 

[13, 6, 2, 

3, 11, 

20] 

[13, 6, 2, 

8, 3, 11, 

20] 

[13, 6, 2, 

9, 3, 11, 

20] 

Dijkstra 

Multipath 

1 

[13, 6, 2, 

3, 11, 

20] 

[13, 6, 2, 

9, 3, 11, 

20] 

[13, 6, 2, 

8, 3, 11, 

20] 

2 

[13, 6, 2, 

3, 11, 

20] 

[13, 5, 1, 

2, 3, 11, 

20] 

[13, 6, 2, 

8, 3, 11, 

20] 

3 

[13, 6, 2, 

3, 11, 

20] 

[13, 6, 2, 

8, 3, 11, 

20] 

[13, 6, 2, 

9, 3, 11, 

20] 

4 

[13, 6, 2, 

3, 11, 

20] 

[13, 6, 2, 

8, 3, 11, 

20] 

[13, 5, 1, 

2, 3, 11, 

20] 

5 

[13, 6, 2, 

3, 11, 

20] 

[13, 6, 2, 

9, 3, 11, 

20] 

[13, 5, 1, 

2, 3, 11, 

20] 

TABLE III 

THE RESULTS OF THE PATH DISCOVERY COST ON THE DFS AND DIJKSTRA 

MULTIPATH ALGORITHM 

Algorithm 
Experiment 

Number 
Path 1 Path 2 Path 3 

DFS 
Multipath 

1 1229.81 1466.54 1481.00 
2 1314.52 1552.12 1572.22 
3 1213.55 1439.96 1454.42 
4 1223.35 1457.81 1460.72 
5 1206.88 1440.84 1444.02 

Average 1237.62 1237.62 1482.48 

Dijkstra 
Multipath 

1 1320.44 1568.62 1583.20 
2 1333.09 1583.99 1598.33 
3 1332.51 1590.12 1592.46 
4 1263.05 1498.42 1521.09 
5 1296.31 1547.33 1551.53 

Average 1309.08 1557.70 1569.32 

B. Path Generation Time Results 

The results of the path generation time for the DFS and 

Dijkstra's multipath algorithm are presented in Tables 4 and 

5. The evaluation was done to determine the time required for 

the path-searching algorithm that has been developed to be 

able to find all paths in the Fat-Tree network topology. The 

results of time readings from each experiment had very 

different values. This was due to the unstable nature of the 

emulation using mininet [30]. The average path generation 
time from the five trials on the DFS multipath algorithm was 

450,597 ms, and the Dijkstra multipath algorithm was 

1087,962 ms. The multipath DFS algorithm had a much 

different average time difference from the multipath Dijkstra 

algorithm.  
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TABLE IV 

THE RESULTS OF THE PATH GENERATION TIME ON THE DFS MULTIPATH 

ALGORITHM 

Experiment 

Number 

Path Generation Time 

(ms) 

Average Time 

(ms) 

1 443.095  
2 644.23 

3 181.574 450.597 
4 723.966  
5 260.12 

TABLE V 

THE RESULTS OF THE PATH GENERATION TIME ON THE DIJKSTRA MULTIPATH 

ALGORITHM 

Experiment 

Number 

Path Generation Time 

(ms) 

Average Time 

(ms) 

1 1081.162  
2 1001.268 
3 1014.267 1087.962 

4 1320.178 
5 1022.934 

 

In accordance with the results in research [17], the results 

of the execution time testing carried out on the same three 

algorithms, namely the modified DFS multipath algorithm 

was 0.0903 ms, the multipath DFS algorithm was 0.0858 ms, 

and the Dijkstra multipath algorithm was 0.901 ms. The test 

results in these two studies showed that the multipath DFS 

algorithm had a faster path generation time than the Dijkstra 

multipath algorithm. 

C. QoS Extraction Results 

The bandwidth variable was extracted by statistical 

analysis on the network being tested by collecting statistical 

measurement data on Wireshark, such as the number of 

packets received in bytes. The results of data extraction were 

converted into KiloBytes (KB). Based on the results listed in 

Table 6, it can be seen that the results of bandwidth testing 

using the MQTT protocol on the DFS and Dijkstra multipath 

algorithms resulted in 825.372. While bandwidth testing 

using CoAP and HTTP protocols has the same results at 708 

KB. Each protocol produced similar results for both 
algorithms. 

TABLE VI 

THE BANDWIDTH RESULTS 

Algorithm 
Bandwidth Average (KB) 

MQTT CoAP HTTP 

DFS Multipath 825.372 708 708 
Dijkstra Multipath 825.372 708 708 

 

The other QoS experiment was the throughput variable. 

The emulation was carried out to know a network's ability in 

actual data transfer. Throughput is a calculation of the value 

of a packet that has been successfully received at the 

destination for a certain period and divided by the length of 

the time interval. The throughput calculation was manually 

processed by taking Wireshark's statistical data in bytes and 

period (s). The results of throughput testing using three 

different protocols that have been carried out are presented in 
Table 7. The obtained values showed the same pattern for 

each protocol. MQTT, CoAP, and HTTP protocols had the 

same throughput value in each algorithm. 

TABLE VII 

THE THROUGHPUT RESULTS 

Algorithm 
Throughput Average (KB) 

MQTT CoAP HTTP 

DFS Multipath 81.60885 59.37517 48.1166 
Dijkstra Multipath 81.60983 59.37401 48.1146 

 

The third QoS test was delay and jitter, which was done by 

extracting the reception time between the received packets 

using the Wireshark application, which was then processed 

manually using the delay and jitter formula. The delayed test 

was also carried out using three different protocols, MQTT, 

CoAP, and HTTP, within five trials, and 100 packets were 

accumulated for each trial. The results of calculating the 100 

packets are calculated on an average, as presented in Table 8. 
Jitter testing was performed to determine the delay variation 

between data transmission on the network that could occur 

due to the influence of traffic load on the network itself. Jitter 

testing was done by using the data from the calculation of the 

delay, and then all the resulting values were divided by the 

number of packets received. Referring to the delay and jitter 

values, all tested protocols produced relatively the same 

average values. However, there was a tendency for better 

delay variations in the DFS algorithm because the 

preprocessing (path generation time) was not too significant. 

TABLE VIII 

THE DELAY AND JITTER RESULTS 
Algorithm MQTT CoAP HTTP 

Delay 

Average 

Jitter 

Average 

Delay 

Average 

Jitter 

Average 

Delay 

Average 

Jitter 

Average 

DFS 

Multipath 
1.00136 0.00012 1.17234 0.00379 1.48629 2.97236 

Dijkstra 

Multipath 
1.00135 0.00013 1.01026 0.11952 1.48635 2.97247 

 

Packet loss testing was calculated from the percentage of 

transmitted packets that were not received by the server 

described in Table 9. Based on the test results, both algorithms 

can effectively determine the path, as evidenced by the packet 

loss value equal to 0%. 

TABLE IX 

THE PACKET LOSS RESULTS 

Algorithm 
Packet Loss Average (%) 

MQTT CoAP HTTP 

DFS Multipath 0 0 0 

Dijkstra Multipath 0 0 0 

IV. CONCLUSION 

Significant results were obtained on the path discovery 

experiment's path generation time variable between the DFS 

and Dijkstra multipath algorithm. In the QoS variable, the 

value obtained gives the same pattern in both algorithms 

because the generated path for sending data on the network is 

approximately the same as the overall multipath routing 
algorithms. From the results of the path discovery using two 

different algorithms, the DFS multipath algorithm can find 

delivery paths faster than Dijkstra. This is because the path 

search process using the DFS algorithm is carried out by 

expanding to nodes in a graph.  

After the node expansion stage, it is followed by a 

backtracking process to get the entire path from the source 

node to the destination. In Dijkstra's algorithm, the path-

searching process uses a greedy strategy where each traversed 
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node is selected based on the smallest weight between the 

nodes selected in the path and other nodes not selected to 

produce the shortest path. From the results that have been 

analyzed, it can be concluded that multipath DFS is superior 

to Dijkstra's multipath algorithm when applied to SD-IoT 

with reference to the path generation time value. In addition, 

processing delay in calculating routing metrics does not 

impact the delay or packet loss value in the data transmission 

process. In future research, the authors plan to develop a 

routing model based on Artificial Intelligence (AI) that can 
automatically select a routing algorithm according to the real-

time conditions on the network. 
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