UMM Institutional Repository

SMART SYSTEM UNTUK KLASIFIKASI TINGKAT STRES DENGAN METODE KOHONEN NEURAL NETWORK MENGGUNAKAN NEUROSKY MINDWAVE

Himawan, Arif Danang Yunindra (2018) SMART SYSTEM UNTUK KLASIFIKASI TINGKAT STRES DENGAN METODE KOHONEN NEURAL NETWORK MENGGUNAKAN NEUROSKY MINDWAVE. Bachelors Degree (S1) thesis, University of Muhammadiyah Malang.

[img]
Preview
Text
PENDAHULUAN.pdf

Download (842kB) | Preview
[img]
Preview
Text
BAB 1.pdf

Download (182kB) | Preview
[img]
Preview
Text
BAB 2.pdf

Download (523kB) | Preview
[img]
Preview
Text
BAB 3.pdf

Download (1MB) | Preview
[img] Text
BAB 4.pdf
Restricted to Registered users only

Download (740kB)
[img] Text
BAB 5.pdf
Restricted to Registered users only

Download (38kB)
[img] Text
Lampiran.pdf
Restricted to Registered users only

Download (757kB)

Abstract

Stress can affect the final grade students in completing the thesis in a timely manner. In previous researchers have researched to determine the level of student stress by recording data EEG (Electroencephalogram) signal using Neurosky Mindwave control device. The Fuzzy method used has weaknesses in the rule base system and no appropriate test equipment is used to compare the results of the method. Kohonen Neural Network is one of the artificial neural network to be an alternative to be able to classify (clustering) a person's stress level based on learning from training data and test the output with Likert Scales test equipment. The Kohonen Neural Network method result 3 clusters with high stress level on attention value 58-98, and meditation 19-51 in Cluster 1, then with moderate stress level in attention value range 60-88 and meditation value 50-78 in Cluster 2, and low stress level in the range of attention value 19-50 and meditation value 25-62 in Cluster 3. Test results with Likert Scales there is a matching output of 45% of the 20 new data.

Item Type: Thesis (Bachelors Degree (S1))
Additional Information: 201310130311154
Uncontrolled Keywords: stress, EEG Signal, Neurosky Mindwave, Kohonen Neural Network, Likert Scales
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions: Faculty of Engineering > Department of Electrical Engineering
Depositing User: CKO Repository
Date Deposited: 01 Nov 2018 02:10
Last Modified: 01 Nov 2018 02:10
URI : http://eprints.umm.ac.id/id/eprint/39032

Actions (login required)

View Item View Item
UMM Official

© 2008 UMM Library. All Rights Reserved.
Jl. Raya Tlogomas No 246 Malang East Java Indonesia - Phone +62341464318 ext. 150, 151 - Fax +62341464101
E-Mail : infopus[at]umm.ac.id - Website : http://lib.umm.ac.id - Online Catalog : http://laser.umm.ac.id - Repository : http://eprints.umm.ac.id

Web Analytics

UMM Institutional Repository is powered by :
EPrints Logo