Build Testbenches for
Verification in Shift Register ICs
using SystemVerilog

by Widianto Widianto

Submission date: 19-May-2023 08:47AM (UTC+0700)
Submission ID: 2096689619

File name: 70-3488-Widianto-sk.pdf (511.92K)

Word count: 3223

Character count: 16487

-

Manuscript received September 17, 2021 ; revised August, 2022

3
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2022, VOL. 68, NO. 3, PP. 619-623
DOL: 1024425/t 2022141281

Build Testbenches for Verification in Shift
Register ICs using SystemVerilog

Widianto, M. Chasrun H., and Robert Lis

Abstract—A testbench is built to verify a functionality of a shift
register IC (Integrated Circuit) from stuck-at-faults, stuck-at-1 as
well as stuck-at-0. The testbench is supported by components, ie.,
generator, interface, driver, monitor, scoreboard, environment,
test, and testbench top. The IC consists of sequential logic circuits
of D-type flip-flops. The faults may occur at interconnects between
the circuits inside the IC. In order to examine the functionality
from the faults, both the testbench and the IC are designed using
SystemVerilog and simulated using Questasim simulator.
Simulation results show the faults may be detected by the
testbench. Moreover, the detected faults may be indicated by error
statements in transcript results of the simulator.

Keywords—testbench: verification; shift register 1C; stuck-at-
faults; SystemVerilog

[. INTRODUCTION

[ENFT register Integrated Circuits (ICs) may be applicated to

serial-to-parallel data conversion and remote control
holding register[1]. The ICs may be implemented to displays
and control units. They consist of sequential logic circuits, i.e.
D-type flip-flops. Stuck-at-faults may occur at either inputs or
output interconnects between the circuits inside the ICs[2].

The faults may be caused by shorted the interconnects to
supply voltage (stuck-at-1) and ground (stuck-at-0)[3]-[5]. The
inputs and outputs of the circuits may stick at high and low
values caused by the stuck-at-1 and stuck-at-0, respectively.
Since the faults may cause functions of the ICs become errors,
they should be detected.

The faults may be detected by an Automatic Test Pattern
Generation (ATPG)[6]-[9]. However, it needs to integrate the
external tools and programs where integrating them is not easy.
Furthermore, it requires a circuit partitioning and a bit parallel
processing.

A Built-in Self Test (BIST) was proposed to detect the
faults[10]-[12]. The BIST consisted by a signature
analyzer[13]. The analyzer is used to compare signals generated
by the faults and faults-free and further analyze them. However,
it takes time consuming, since the signal faults are detected by
checking the generated signals one-by-one. Furthermore, the
BIST is still designed by a Verilog Hardware Description
Languages (HDL) in which it isn’t supported by Object
Oriented Programming (OOP) features[14]-[16], thus the
detected faults aren’t indicated by pass/ error statements.

A SystemVerilog is an extension of the Verilog HDLA7]-
[21] used to design and verify hardware[22][23], e.g., Field

This work was supported by University Muhammadiyah Malang under Grant
PDK No.: E.2.a/132/BAA-UMM/IV/2020.

First Author and Second Author are with University of Muhammadiyah
Malang, Department of Electrical {Bhgineering, Indonesia (e-mail:
widiantof@umm.ac.id and chasrun@umm.ac.id)

Programmable Gate Arrays (FPGAs) and Application-Specific
Integrated Circuits (ASICs). The hardware design is created in
a Register Transfer Level (RTL) model. Moreover, to verify
functionality of the design working as expected, a testbench
should be built[24]. The testbench drives different input
stimulus to the design and is supported by the OOP features.

In this paper, a proposed shift register 1C is designed using
the SystemVerilog. It will be verified the functionality from
both stuck-at-faults, stuck-at-1 and stuck-at-0 by a testbench.
The designed IC and its testbench are simulated using
Questasim simulator[25]. Simulation results denote that the
faults inside the IC may be detected by the testbench.
Furthermore, indicating pass/ error statements is included in the
detected faults by it.

II. RESEARCHMETHOD

A testbench is built to verify a functionality of a shift
register IC from both stuck-at-faults, stuck-at-1 and stuck-at-0.
The testbench architecture is shown in Figure 1. There are some
supported components, namely, transaction object, generator,
nterface, driver, monitor, scoreboard, environment, test, and
testbench top. The IC is as a Design Under Test (DUT).

Scoreboard
‘

Test

Driver | | Monitor |
1 !

y

Fig.1. Testbench architecture

The DUT is a sample 8-bit shift register IC produced by
Nexperia Co. Ltd. A logic diagram of the DUT is shown in
Figure 2. As shown in Figure 2, the DUT consists of four buffer
gates, two inverter gates, and eight stages, stage 0 to stage 7.
Each of the stages 1s made of a buffer gate and two D flip-flop
types in which the D flip-flop types are a shift register sh and
a storage register s7. Symbol descriptions in the DUT are shown
in Table L.

Third Author is with Wroclaw University of Science and Technology,
Poland (e-mail: Robertlis@pwr.edu)

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Atiribution License (CC BY 4.0,

https://creativecommons.org/licenses/by/4.0/), which permits use, di

ion, and rep in any medium, provided that the Article is properly cited.

XXX594
Stage 0 Stage 1-6 Stage 7
in >0 oM HD QT ars
sh0 sh7
c c
R |- R
Csh T |
Rshlpe] 1 i
I:D é‘r) N |:D Qn
st st7
c C
[r [
Cst4> j rersmieiermiaranan |
Rsti{e -
Y
Q102 Q3 Q4 Q506 ar
Fig.2. Logic diagram of the DUT
TABLE]
SYMBOL DESCRIPTION OF THE DUT
Symbol Description
in Serial data input
Csh Shift register clock input
Rsh Shift register reset input
Rst Storage register reset input
QO0-t0-Q7 Parallel data output
Q7s Serial data output

WIDIANTO, M. CHASRUN H., ROBERT LIS

high level signal regardless provided level signals of the in. On
the other hand, occurring a stuck-at-0 is shown in Figure 5b. An
output of the 540 in the stage 0 will stick at a low level signal
caused by the stuck-at-0.

Rsh

Q7 - - - | ' 1—\

Fig.4. Timing Diagram of the DUT

Moreover, the DUT is designed using a SystemVerilog.
The SystemVerilog code of the DUT is shown in Figure 3. The

Furthermore, all components in the testbench are coded by

code is based on logic diagram as shown in Figure 2. There are

eight stages, four inverters, and two inverters in the code.

module sh394b (in, Csh, Rsh, Cst, Rst, Q, Q7S5, gsh);

the SystemVerilog. There are classes and a module. The classes
are the transaction object, the generator, the interface, the driver,
the monitor, the scoreboard, the environment, and the test.
However, the testbench top is the module.

input in, Csh, Rsh, Cst, Rst;
output [7:0] Q;

output Q7S;

output [7:0] gsh;

inva u3 (.g(rsh), .fiRsh));

si;ge uS (.dsh{dsh), .csh{csh), .rsh(rsh), .cst(cst), .rst(rst),
qsh(gsh[0]), .qst(QO)):

bufful3 (d(Q7S), .c(gsh[7]));

assign Q= {Q7, Q6, Q5, Q4,Q3,Q2,Q1,Q0};

endmodule

Fig.3. SytemVerilog code of the DUT

A timing diagram of the DUT is shown in Figure 4. The
DUT is reset by providing low level signals to the Rsh and the
Rst. 1f the DUT is reset, all outputs of the Q7S and the Q0-to-
Q7 are low level signals.

On the other hand, the DUT will run by providing high
signals to the Rsh and the Rst. When a high pulse and clock
signals are provided to the in and the Csh, respectively, the pulse
signal will be shifted to each the stage and outputted serially to
the Q7S since low-to-high transitions of the Csh. Moreover,
clock signals are provided to the Cst behind one clock pulse of
the Csh, the pulse signal will be shifted parallelly to the Q0-to-
Q7 when low-to-high transitions of the Cst.

Stuck-at-faults may occur at interconnects between the
stages inside the DUT. For example, Figure 5a shows a stuck-
at-1 occurring between the stage 0 and the stage 1. The stuck-
at-1 may cause an output of the sh0 in the stage 0 will stick at a

KX X594
[Stage 0 T_Srage1
in 1D D bl
C'_-‘.hgJ C5‘.h1Q
[Eadlf |[Ce
Cshi>] : ses
RshHol—t l
| =
s.tg:| st‘lQ
Cc Cc
CstHp> [=
std T T
Rst4{>e l !
Y Y
Qo Q1
(a)
KXX594
[Stage U [Stage 1
in 1> D
shg ” 5‘.h1Q
o] o]
[Ead)l |[le
Cshy T I
Rsh{oel—1 1 1.
Ganl |Gar
CstD Cst1
[Cedll e
Cst+> f i
Rst4{>
Y Y
Qo Qi
(b)

Fig.5. Stuck-at-faults (a) Smck-at-1 (b) Stuck-at-0

BUILD TESTBENCHES FOR VERIFICATION IN SHIFT REGISTER ICS USING SYSTEMVERILOG 621

The transaction object is a base transaction object will be
used to verify the DUT may work as the timing diagram shown
in Figure 4. Moreover, the base transaction is used in the
environment to initiate new transactions and capture
transactions at the interface. The code of the transaction object
is shown in Figure 6.

class Packet;
bitin;
bit Csh;
bit Rsh;
bit Cst;
bit Rst;
rand bit[7:0] Q;
bitQ7S;
rand bit[7:0] gsh;

endclass

Fig.6. Code of the transaction object

The generator is used to generate the random input stimulus
signals to be sent to the driver. Figure 7 shows the generator
code.

class generator;
int loop=10;
event drv_done;
mailbox drv_mbx;

endclass

Fig.7. Code of the generator

Furthermore, the driver is to drive the stimulus signals to
the interface and the scoreboard. The code of the driver is shown
in Figure 8.

class driver;
virtual switch_ifm_switch_vif;
virtual sh594b_if m_sh594b_vif;
virtual clk_if m clk_wvif;
eventdrv_done;
mailbox drv_mbx;

endclass

Fig 8. Code of the driver

Moreover, the interface contains the stimulus signals driven
to the DUT and response signals derived from the DUT. All the
signals are required by the DUT to be operated. Figure 9 shows
the code of the interface.

interface sh394b_if():
logic in;
logic Csh;
logic Rsh;
logic Cst;
logic Rst;
logic[7:0] Q:
logic Q7S;
logic[7:0] gsh;
endinterface

Fig 9. Code of the driver

Then, the response signals will be monitored by the monitor
and captured to the scoreboard. The code of the monitor is
shown in Figure 10.

class monitor;
virtual sh394b_if m_sh594b_wvif;
virtual clk_if m_clk_vif;
mailbox scb_mbx;

endclass

Fig.10. Code of the monitor

Further, the scoreboard will check the response signals
compared to expected signals. When the response signals are
not match to the expected signals, the DUT is a faulty indicated
by error statements. Otherwise, pass statements indicate the
DUT is a fault-free. Therefore, the scoreboard may have a
refence model behaving as the DUT. The reference model code
of the scoreboard is shown in Figure 11.

class scoreboard;

if (!ref_item.Rsh) begin
{ref item.qsh} = 0;
end else begin
{ref item.gsh} = {ref item.qsh[6:0], ref item.in};
end
if (!ref_item.Rst) begin
jref item.Q} =0;
end else begin
{ref item.Q} = {ref_item.Q[6:0], ref item.qsh[0]};
end

endclass

Fig.11. Reference model of the scoreboard

The environment contains all the verification components,
e.g., the generator, driver, interface, the monitor, and the
scoreboard. Figure 12 shows the code of the environment.

class env;
generator g0;
driver do;
monitor m();

scoreboard 0;

endclass

Fig.12. Code of the environment

The test contains the environment that can be tweaked with
different configuration settings. Also, the test may instantiate
any environment. Figure 13 is the code of the test.

class test;
env el;
mailbox drv_mbx;

endclass

Fig.13. Code of the test

The testbench top contains the test. Moreover, the faults are
mnserted to it by force and release instructions. The code of the
testbench top is shown in Figure 14.

module th_sh594b3sa;

sh594b ul (.in(in),
.Csh(Csh),
.Rsh(Rsh),
.Cst(Cst),
Rst (Rst),

622

WIDIANTO, M. CHASRUN H., ROBERT LIS

.Q(m_sh3594b_if.Q),
.Q7S(m_sh594b_if.Q78),
.qsh(gsh));

initial begin
test t0;

#35 force gsh[0])=1;
#4 release gsh[7];

endmodule

Fig.14. Code of the testbench top

III. RESULTS AND DISCUSSION

Building a testbench 1s proposed to verify a functionality of
a shift register IC from stuck-at-faults. The testbench based on
Figure 1 in which the register IC is as a DUT. The DUT is 8-bit
shift register produced by Nexperia Co. Ltd in which it has a
timing diagram as shown in Figures 4.

The testbench and the DUT are simulated using Questasim
simulator. Simulation and transcript results of a fault-free DUT
are shown in Figures 15 and 16, respectively. As shown in
Figure 15, the result is an identic timing diagram of the DUT in
Figure 4. Moreover, the scoreboard indicates pass statements
verifying the DUT is a fault-free as shown in Figure 7.

In order to verify the DUT from the faults, stucks-at-1 are
mnserted each output sh of stage 0 to stage 7 when the output
should be in low level signals. Figures 17 and 18 show
simulation and transcript results of faulty DUT, respectively. As
shown in Figure 18, error statements in the scoreboard indicate
the DUT is a faulty.

ho
Thl
1Ho
1o
ho
400
i
fu
mo
1ho
1ho
o
o
1o

#[11] Scoreboard Pass! Q match ref_item=0x2 item=0x2
#[11] Scoreboard Pass! Q7S match ref item=0x0 item=0x0

#[31] Scoreboard Pass! Q match ref item=0x40 item=0x40
#[31] Scoreboard Pass! Q7S match ref item=0x0 item=0x0

#[51] Scoreboard Pass! Q match ref_item=0x0 item=0x0
#[51] Scoreboard Pass! Q7S match ref item=0x0 item=0x0

#[71] Scoreboard Pass! Q match ref_item=0x0 item=0x0
#[71] Scorcboard Pass! Q7S match ref item=0x0 item=0x0

#[91] Scoreboard Pass! Q match ref item=0x0 iterm=0x0
#[91] Scoreboard Pass! Q7S match ref_item=0x0 item=0x0

Fig.16. Transcript result of fault-free

#[51] Scoreboard Error! Q mismatch ref_item=0x0 item=0x7
#[51] Scoreboard Pass! Q7S match ref item=0x0 item=0x0

#[71] Scorcboard Error! Q mismatch ref item=0x0 item=0x T
#[71] Scoreboard Pass! Q7S match ref item=0x1 item=0x1

#[91] Scoreboard Error! Q mismatch ref_item=0x0 item=0x{T
#[91] Scoreboard Pass! Q7S match ref item=0x1 item=0x1

Fig.18. Transcrpt result of faulty DUT

Fig.15. Simulation result of fault-free

Fig. 17. Simulation result of faulty DUT

BUILD TESTBENCHES FOR VERIFICATION IN SHIFT REGISTER ICS USING SYSTEMVERILOG

CONCLUSION

A testbench is built to verify a functionality of a shift register
IC by inserting stuck-at-faults inside it. The testbench and the
IC are designed by SystemVerilog. Moreover, they are
simulated by Questasim simulator. Simulation results show the
faults may be detected by the testbench. Moreover, error
statements will indicate the detected faults in transcript results
of the simulator.

ACKNOWLEDGEMENTS

We would like to express gratitude to University of
Muhammadiyah Malang for funding this work.

REFERENCES

[1] T. Ndjountche, Digital Electronics 2: Sequential and Arithmetic Logic
Circuits. 2016.

[2] G. Nithya and M. Ramaswamy, *Very large scale integrated solution for
stuck at faults in synchronous sequential circuits,” I. Comput. Theor.
Nanosci., vol. 16, no. 4, 2019, htp://doi.org/10. 1 166/jcm. 2019 8047

[3] A, A Abou-Auf, M. M. Abdel-Aziz, M. A. Abdel-Aziz, and A. A. Ammar,
“Fault Modeling and Worst Case Test Vector Generation for Flash-Based
FPGAs Exposed to Total Dose.” IEEE Trans. Nucl. Sci., vol. 64, no. 8,
2017, hitpv/doi.org/ 101109 TNS. 2017 2687982

[4] D. Addala, P. Teja, and 8. Saxena, “Fault simulation algorithm for
transistor single stuck short faults,” in Intelligent Circuits and Systems,
2021.

[5] H. M. Gaur, A. K. Singh, and U. Ghanekar, “Design for Stuck-at Fault
Testability in Toffoli-Fredkin Reversible Circuits,” Natl. Acad. Sei. Lett.,
vol. 44, no. 3, 2021, http://doi.org/10.1007/540009-020-00967-3

[6] P.Wang, A. M. Gharehbaghi, and M. Fujita, *An Automatic Test Pattern
Genemtion Method for Multiple Stuck-At Faults by Incrementally
Extending the Test Patterns,” IEEE Trans. Comput. Des. Integr. Circuits
Syst., vol. 39, no. 10, 2020, http://doi.org/10. 1109 TCAD 20192957364

[7] P.Wang, A. M. Gharehbaghi, and M. Fujita, “An Incremental Automatic
Test Pattem Generation Method for Multiple Stuck-at Faults.” in
Proceedings of the IEEE VLSI Test Symposium, 2019, vol. 2019-April,
http://doi.org/10.1109/VTS.2019. 8758668

[8] P. Wang, A. M. Gharehbaghi, and M. Fujita, “Automatic Test Pattern
Generation for Double Stuck-at Faults Based on Test Patterns of Single
Faults,” in Proceedings - International Symposium on Quality Electronic
Design, ISQED, 2019, vol. 2019-March,

http://doi.org/10.1 109%/ISQED.2019.8697831

[9] B. Alizadeh and S. R. Shamfingjad, “Incremental SAT-Based Accurate

Auto-Comection of Sequential Circuits Through Automatic Test Pattern

Genenation,” [EEE Trans. Comput. Des. Integr. Circuits Syst., vol. 38, no.

2, 2019, http://doi.org/10.1 109/ TCAD.2018.2812123

Y. Ogasahara et al., “Implementation of pseudo-linear feedback shift

register-based physical unclonable functions on silicon and sufficient

[1o]

[t

[12]

[13]

[14]

[15]

[to]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

613

Challenge—Response pair acquisition using Built-In Self-Test before
shipping.” Integration, vol. 71, 2020,
hrtp://doi.org/10.1016/1.v1si.2019.12.002

V. Shivakumar, C. Senthilpar, and Z. Yusoff, “A Low-Power and Area-
Efficient Design of a Weighted Psendorandom Test-Pattern Generator for
a Test-Per-Scan Built-in Self-Test Architecture,” IEEE Access, vol. 9,
2021, hitp//doi.org/10. T 1OWACCESS.2021 3059171

M. Sharma and J. Dhanoa, *Smart Logic Built in Self-Test in SOC,” 2020,
http://doi.org/10. 1109/ ICRATES 1050 2020.9358 296

Widianto, “A SIGNATURE REGISTER OF A BIST TO DETECT
STUCK-AT-FAULTS IN COMBINATIONAL LOGIC ICS” in
SENTRA, 2020, pp. 39-44,

http://doi.org/https://doi.org/10.222 1 9/sentra v0i6. 3811

T.D. Prasad and B. R. Babu, *Designand Simulation of SPI Master/ Slave
Using Verlog HDL,” Int. J. Sci. Res., vol. 3, no. 8, 2014,

P.Flake, P. Moorby, 8. Golson, A. Salz, and S. Davidmann, “Verilog HDL
and its ancestors and descendants,” Proc. ACM Program. Lang., vol. 4, no.
HOPL, 2020, http://doi.org/10.1145/3386337

M. Qiu, 5. Yu, Y. Wen, I. Lii, J. He, and Z. Lin, “Design and FPGA
Implementation of a Universal Chaotic Signal Generator Based on the
Verlog HDL Fixed-Point Algorithm and State Machine Control,” Int. J.
Bifure. Chaos, vol. 27, no. 3, 2017,

http://doi.org/10.1142/S0218 127417500407

M. W. Anwar, M. Rashid, F. Azam, and M. Kashif, “Model-based design
verfication for embedded systems through SVOCL: an OCL extension for
SystemVerilog,” Des. Autom. Embed. Syst, vol. 21, no. 1, 2017,
http://doi.org/10.1007/s10617-017-9182-2

K. K. Yadu and R. Bhakthavatchalu, “Block Level SoC Verification Using
Systemverilog,” 2019, http://doi.org/10. L TOWICECA.2019. 8821909

M. W. Anwar, M. Rashid, F. Azam, M. Kashif, and W. H. Butt, “A model-
driven framework for design and verfication of embedded systems
through SystemVerilog,” Des. Autom. Embed. Syst., vol. 23, no. 34,
2019, http://doi.org/10.1007/s10617-019-09229-y

A. AL Vivekananda and E. Enoiu, “Automated test case generation for
digital system designs: A mapping study on vhdl, wvenlog, and
systemverlog description langnages,” Designs, vol. 4, no. 3, 2020,
http://doi.org/10.3390/designs4030031

“Design and Verification of UART using System Verlog,” Int. J. Eng.
Adv. Technol., vol. 9, no. 5, 2020,
http://doi.org/10.35940/ijeat.e1135.069520

K. Benefits, “Industry’s Highest Performance Simulation Solution,”
Synopsys, 2020.

L. A. Kadlubowski and P. Kmon, “Test and Verification Environment and
Methodology for Vemier Time-to-Digital Converter Pixel Array,” 2021,
http://doi.org/10.1109/DDECS52668.2021 .94 17054

D. Ahlawat and N. Kr. Shukla, *Performance Analysis of Verilog Directed
Testbench vs Constrained Random SystemVerilog Testbench,” Int. J.
Comput. Appl., vol. 118, no. 22, 2015, http=//doi.org/10.5120/208 74-3612
B. Chinna Munaiah and 8. M. Shamsheer Daula, *Design and verification
of advanced high-performance bus lite protocol using questa sim,” J. Adv.
Res. Dyn. Control Syst., vol. 11, no. 9 Special Issue, 2019,
http://dot.org/10.5373/JARDCS/V11/20192572

Build Testbenches for Verification in Shift Register ICs using

SystemVerilog

ORIGINALITY REPORT

4., A, 3 3

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

bibliotekanauki.pl

Internet Source

2%

www.farnell.com

Internet Source

T

Surakarta
Student Paper

T

Ali, F.M.. "Hardware-software co-synthesis of
hard real-time systems with reconfigurable
FPGAs", Computers and Electrical Engineering,
200410

Publication

Submitted to Universitas Muhammadiyah

T

Exclude quotes On Exclude matches <1%

Exclude bibliography On

turnitingJ)
Digital Receipt

This receipt acknowledges that Turnitin received your paper. Below you will find the receipt
information regarding your submission.

The first page of your submissions is displayed below.

Widianto Widianto

Publication Articles April-Juni 2023

Build Testbenches for Verification in Shift Register ICs using ...
70-3488-Widianto-sk.pdf

511.92K

Page count: 5

3,223

16,487

19-May-2023 08:47AM (UTC+0700)

2096689619

Submission author:
Assignment title:
Submission title:

File name:

File size:

Word count:
Character count:
Submission date:

Submission ID:

r INTL JOURNAL OF ELECTRONICS AND TELECOMMUICATIONS, 2022, VOL 65, NO.3. PP.610.623

Nansseptsecaed Setenber 17, 202: exised At 2022 DO 124425 et 2022141281

Build Testbenches for Verification in Shift
Register ICs using SystemVerilog

Widianto, M. Chasrun ., and Robert Lis

Abstract—A testbench is built o verify a fanctionali
register IC (Integrated Circuit) from stuck-at-faults,
well as stuck-at0. The testbench is suppored by
‘generator, interface, driver, monitor, scorcboard, environms
test, and testbench top. The IC consists of sequential logi circuits
D-type flip-flops. The faults may oceur at interconneets between

simulated using Questasim simulator.
imul y be detected by the
sthench. Moreover, the detected faults may be indicated by error
statements in transcript results of the simulator.

Keywords—testheneh; verification; shift register 1C; stuck-at-
faults; System Verilog.

1. INTRODUCTION
HIFT register Integrated Circuits (ICs) may be applicated to
serial-to-parallel data conversion and remote control
register[1]. The I
and control units. The; e
D-type flip-flops. Stu cur at either inputs or
output interconnects betw s inside the 1C5[2].

‘The faults may be caused by shorted the inerconnects to
supply volage (stuck-at-1) and ground (stuck-at-0)(3]-[5]. The
inputs and outputs of the circuits may stick at high and low
values caused by the stuck-at-1 and stuck-at-0, respectively.
Since the faults may cause functions of the ICs become errors,
they should be detected.

The faults may be detected by an Automatic Test Patiem
Generation (ATPG)[6]-[9). However, it needs to integrate the
external tools and programs where integrating them is not casy.
Furthermore, it requircs a circuit partitioning and a bit parallel

e implemented to displays
al logic circuts, e

in Self Test (BIST) was proposed to detect the
faults[10] (12 The BIST consisied by a signature
7er{13]. The analyzer is used to compare signals generated
lyze them. However,

Hardware Description
Languages (HDL) in which it isnt supported by Object
Oriented_Programming (OOP) features[141-{16], thus the
detected faults aren’t indicated by pass/ error statements.

A SystemVerilog is an extension of the Verilog HDL[17}-
[21] used to design and verify hardware[22][23]. c.g., Field

PDK No: E2.0/137BAA-UMMIV/2020.

Fint Aubor and Second Au

£

with University of Mubammadiysh
Depurtment of Eletrical Engineerng, _Indos

il nesi (c-mai
widianto@umm ac.d and chaszuni@umen ac)

Programmable Gate Arrays (FPGAS) and Application-Specific

Integrated Circuits (ASICs). The hardware design is ereated in

a Register Transfer Level (RTL) model. Moreover, to verify

functionality of the design working as expected, a testbench

should be buil(24]. The testbench drives different input
na

stuck-at-1 and stuck-at-0 by a testbench.
The designed IC and its testbench are simulated using

Furthermore, indicating pass/ error statements is included in the
detected faults by it

1L RESEARCHMETHOD
A testbench is built to verify a functionality of a shift
register IC from both stuck-at-faults, stuck-at-1 and stuck-at-0.
architecture is shown in Figure 1. There are some
mponents, namely, transaction object, generator,
interface, driver, monitor, scoreboard, environment, test, and
testbench top. The IC is as a Design Under Test (DUT).

Figl, Tesbench architecure

The DUT is a sample 8-bit shift register IC produced by
Nexperia Co. Ltd. A logic diagram of the DUT is shown in
Figure 2. As shown in Figure 2, the DUT consists of four buffer
gates, two inverter gates, and cight stages, stage 0 to stage 7.
Each of the stages is made of a buffer gate and two D flip-flop
types in which the D flip-flop types are a shift register s/ and
a storage register st. Symbol descriptions in the DUT are shown
in Table 1.

Third Autor is
Poland (e mail: Robe

roclaw Universiy of Science and Technology,
weedu)

© The Aubore). Th & an opnacss srice diwbuied wder the tens of the Cresive Commons Awibuion Licnse (CC BY 4.
S s e - s »

Copyright 2023 Turnitin. All rights reserved.

