

Digital Receipt

This receipt acknowledges that Turnitin received your paper. Below you will find the receipt information regarding your submission.

The first page of your submissions is displayed below.

Submission author: **Turnitin Instructor**

Assignment title: PAK Teknik

Submission title: The effect of variations in thickness of 2024 T42 aluminum p...

th_and_macrography_in_the_process_of_resistance_spot_wel... File name:

769.1K File size:

Page count: 12

Word count: 2,927

Character count: 16,190

22-Jan-2024 11:25PM (UTC+0700) Submission date:

Submission ID: 2275433172

Volume 3, Nomor 2, Oktober 2022, hlm 96-107 JTTM: Jurnal Terapan Teknik Mesin p ISSN 2721-5377l e ISSN 2721-7825

Pengaruh variasi ketebalan plat alumunium 2024 T42 terhadap kekuatan tarik dan macrography pada proses resistance spot welding

The effect of variations in thickness of 2024 T42 aluminum plate on tensile strength and macrography in the process of resistance spot welding

Heni Hendaryati, M. Irkham Mamungkas*, Iis Siti Aisyah, Muhammad Hasbi Rusmana * Teknik Mesin, Fakultas Teknik, Universitas Muhammadiyah Malang * Ji Raya Toguwan No. 246 Mang, Indonesia *Koresponden Email: irkham@umm.ac.id

Agyoneta: Austrumia: Buch registry: Festimate: spile violenty: Buch registry and the PNAME (III) PNAME (III) (III) PNAME

The effect of variations in thickness of 2024 T42 aluminum plate on tensile strength and macrography in the process of resistance spot welding

by Turnitin Instructor

Submission date: 22-Jan-2024 11:25PM (UTC+0700)

Submission ID: 2275433172

File name: th and macrography in the process of resistance spot welding.pdf (769.1K)

Word count: 2927

Character count: 16190

Polume 3, Nomor 2, Oktober 2022, hlm 96-107 JTTM: Jurnal Terapan Teknik Mesin p ISSN 2721-53771e ISSN 2721-7825

Pengaruh variasi ketebalan plat alumunium 2024 T42 terhadap kekuatan tarik dan macrography pada proses resistance spot welding

The effect of variations in thickness of 2024 T42 aluminum plate on tensile strength and macrography in the process of resistance spot welding

Heni Hendaryati, M. Irkham Mamungkas*, Iis Siti Aisyah, Muhammad Hasbi Rusmana

* Teknik Mesin, Fakultas Teknik, Universitas Muhammadiyah Malang * Jl. Raya Tlogomas No. 246 Malang, Indonesia

*Koresponden Email: irkham@umm.ac.id

Article Submit: 31/08/2022 Article Revision:06/10/2022 Article Accepted: 07/10/2022

Abstrak: Resistance Spot Welding merupakan metode pengelasan yang kompleks, yang melibatkan intraksi listrik, termal, mekanik, dan metalurgi. Dimana dalam prosesnya terdapat tiga parameter umum yang mempengaruhi Resizance Spot Welding arus listrik (welding current), tekanan elektroda (electrode force), dan siklus pengelasan. Tujuan dari penelitian ini adalah untuk mengetahui pengaruh variasi ketebalan pada proses Resistance Spot Welding terhadap sifat fisis pada material Alumunium 2024 T42 dengan variasi ketebalan 0.5 + 1.2 + 0.6 mm, 0.8 + 0.6 + 1.0 mm, dan 0.8 + 1.2 + 1.2. Pengujian yang dilakukan yaitu uji tarik (tensile-shear test), dan uji macrography. Hasil pengujian dari setiap variasi ketebalan memenuhi standart AWS D17.2 dengan nilai lebih dari 140 lbf.

Kata kunci: Alumunium; macrography; resistance spot welding; tensile-shear test; variasi ketebalan.

Abstract: Resistance Spot Welding is a complex welding method, which involves electrical, thermal, mechanical, and metallurgical interactions. In the process there are three general parameters that affect the SpotWelding Resistance electric current (welding current), electrode pressure (electrode force), and the welding cycle. The purpose of this study was to determine the effect of thickness variations on the Resistance Spot Welding process on the physical properties of $2024\ T42\ Aluminum\ material\ with thickness\ variations of <math>0.5+1.2+0.6\ mm$, $0.8+0.6+1.0\ mm$, and 0.8+1.2+1.2. The tests carried out are tensile test (tensileshare test), and macrographic test. The test results from each thickness variation meet the predetermined standards

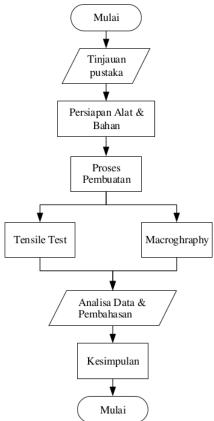
Keywords: Aluminum; macrography; resistance spot welding; thickness variation; tensile-shear test.

1. PENDAHULUAN

Welding merupaka suatu cara penyambungan dua atau lebih logam melalui proses pemanasan. Berdasarkan Deutchen Industrie Normen (DIN) Welding adalah ikatan metalurgi pada sambungan logam atau logam paduan yang dilaksanakan dalam keadaan lumer atau cair [1] dalam penggunaannya teknik pengelasan banyak digunakan dalam konstruksi kapal, pesawat terbang, bangunan [2].

Resistance Spot Welding merupakan metode pengelasan yang kompleks, yang melibatkan intraksi listrik, termal, mekanik, dan metalurgi [3]. Penggunaan metode pengelasan ini dalam proses penyambungan logam dengan ketebalan yang tipis untuk struktur manufaktur [4] khususnya dalam perakitan struktur seperti, mobil, truk, pesawat terbang, gerbong kereta apai, rata-rata diperlukan 4000 titik pengelasan [5]. Dengen penggunaan metode Resistance Spot Welding dapat mengurangi bobot kendaraan, mengoptimalkan keselamatan dan dapat menekan biaya produksi [6][7].

Proses *Resistance Spot Welding* menggunakan jenis sambungan *lap join* dimana dua atau lebih logam ditumpuk lalu dijepit dengan sepasang elektroda, pada waktu yang bersamaan dialirkan arus listrik yang mengakibatkan terjadinya resistensi pada titik logam [6],[8]. Dengan arus listrik yang cukup besar mengakibatkan pelelehan pada titik tekan elektroda dan membentuk *nugget* las [9] Secara umum terdapat beberapa parameter yang mempengaruhi hasil *Resistance Spot Welding (RSW)* adalah arus


JTTM: Jurnal Terapan Teknik Mesin is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

listrik (welding current), tekanan elektroda (electrode force), dan siklus pengelasan [10]. Dalam siklus pengelasan tersebut terdiri dari tiga siklus yaitu, waktu penekanan (squeeze time), waktu pengelasan (welding time), waktu pendinginan (cooling time) [11].

Dalam proses penyambungan ketebalan plat yang berbeda lebih memiliki variasi mikrostruktur dan sifat mekanis yang lebih rumit yang dapat mempengaruhi hasil dari proses Resistance Spot Welding pada bagian nugget [12]. Dimana penelitian ini untuk mengetahui hasil dari pengelasan menggunakan pengujian merusak (destructive test) yaitu uji tarik (tensile test) dan uji macrography untuk mendapatkan hasil yang lebih akurat. Penggunaan material alumunium 2024 T42 dengan tiga variasi ketebalan 0.5 + 1.2 + 0.6 mm, 0.8 + 0.6 + 1.0 mm, dan 0.8 + 1.2 + 1.2 mm perbedaan variasi pada ketebalan plat logam dipilih untuk dapat mengkaji lebih dalam mengenai pengaruh variasi ketebalan plat logam terhadap sifat mekanis dan struktur makro pada proses Resistance Spot Welding dengan parameter yang sama.

METODE

Dalam proses penelitian ini menggunakan metode eksperimen serta melakukan tinjauan pustaka dari berbagai sumber. Penelitian ini menggunakan material plat Alumunium 2024 T42 dengan variasi ketebalan 0.5 + 1.2 + 0.6 mm, 0.8 + 0.6 + 1.2 mm, dan 0.8 + 1.2 + 1.2 mm dengan parameter pengelasan sebagai variabel tetap. Untuk mendapatkan hasil dari penelitian menggunakan dua metode pengujian yaitu pengujian tarik (tensile test) dan pengujian macrography. Dalam prosedur sederhana penelitian ini dapat di jelaskan pada gambar 1.

Gambar 1. Diagram alir penelitian

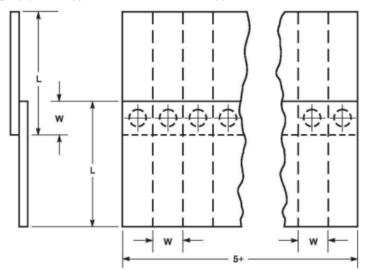
98 Heni Hendaryati, M. Irkham Mamungkas, Iis Siti Aisyah, Muhammad Hasbi Rusmana Pengaruh variasi ketebalan plat alumunium 2024 T42 terhadap kekuatan tarik dan macrography pada proses resistance spot welding

Dalam proses Resistance Spot Welding terdapat parameter yang menjadi variabel tetap dalam proses pembuatan spesimen uji dimana untuk ketiga variasi ketebalan menggunakan parameter yang sama.

Tabel 1 Parameter pengelasan

No.		abei 1. Parameter pengeiasa arameter	111
1	Elektroda / Diamete	er (mm)	CuAg / 16
2	Radius Contact	Upper	150
	(mm)	Lower	150
3	Contact Resistance	(µOhm)	5
4	Weld Class		II
5	Pressure (Psi)	Upper Regulator (PG2)	26
		Lower Regulator (PG1)	11
		Contact Gauge	24
6	Pressure Program		Variable Pressure
7	Power		Low
8	Phase		3
9	Pre-Compress (cycl	les)	10
10	Squeeze (cycles)		12
11	Quench (cycles)		10
12	Hold (cycles)		20
13	Welding (cycles)		02
14	Impluse CO (cycles)	02
15	HT (cycles)		02
	Max. Current (%)		57
16	CD (cycles)		03
	Max. current (%)		27

Proses Resistance Spot Welding menggunakan mesin SCAKY Type P272. Settingan parameter sebagai variabel tetap dilakukan pada mesin sebelum melakukan proses pembuatan spesimen uji.


Gambar 2. Mesin resistance spot welding scaky type p272 [13]

Pengujian tarik bertujuan untuk mengetahui sifat-sifat mekanik dari suatu logam terhadap perbedaan tarik. Beban pada pengujian tarik dimulai dari nol dan berakhir pada tegangan patah tarik (ultimate strenght). Pemotongan spesimen uji menggunakan standar AWS Multiple Spot Weld Shear Specimens dimana nilai L tidak akan kurang dari 4W dalam satu potongan plat dibuat menjadi 5 atau lebih spesimen uji [14]. Dalam proses pengujian tarik menggunakan standar pengujian ASTM E8 dengan alat UTM INSTRON 5982, serta menggunakan software Bluehill 3 sebagai penerjemah hasil pengujian dari alat.

Gambar 3. UTM instron 5982 [15].

Gambar 3 menjelaskan alat yang digunakan dalam pengujian tarik adalah mesin Instron 5982. Untuk standar pengujian menggunakan ASTM E8 dan menggunakan software Bluehill.

Gambar 4. Multiple spot weld shear specimens [14].

Heni Hendaryati, M. Irkham Mamungkas, Iis Siti Aisyah, Muhammad Hasbi Rusmana Pengaruh variasi ketebalan plat alumunium 2024 T42 terhadap kekuatan tarik dan macrography pada proses resistance spot welding

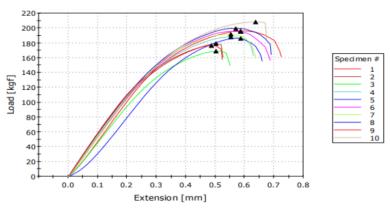
Gambar 4 menjelaskan standar AWS digunakan untuk menguji kekuatan beban geser pada pengelasan transversal.

Gambar 5. Olympus SZX7 [15]

Gambar 5 menjelaskan alat OLYMPUS SZX7 yang digunakan untuk mengamati spesimen dengan bantuan *software Olympus Stream Basic* sebagai penerjemah dari hasil pengamatan alat. Pengujian ini bertujuan untuk mengetahui diameter nugget, nilai penetrasi, serta mengamati daerah *Heat Affected Zone* (HAZ) yang mengacu pada standar AWS D17.2.

Gambar 6. Spesimen uji macrography

Gambar 6 menjelaskan pada pengujian *macrography* spesimen uji yang telah melalui proses *Resistance Spot Welding* dipotong *longitudinal* pada titik tengah *nugget* pengelasan untuk kemudian dihaluskan dan dilakukan pengamatan.

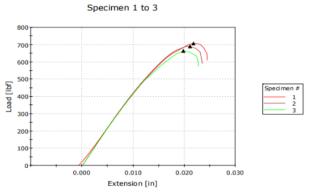

3. HASIL DAN PEMBAHASAN

Berdasarkan hasil pengujian tarik pada plat alumunium 2024 T42 dengan variasi ketebalan 0.5 + 1.2 + 0.6 mm, 0.8 + 0.6 + 1.0 mm, dan 0.8 + 1.2 + 1.2 mm maka didapatkan kekuatan tarik sebagai berikut:

Tabel 2. Hasil uji tarik variasi ketebalan 0.5 + 1.2 + 0.6 mm

	Maximum Load
	[kgf]
1	196.21
2	179.18
3	169.08
4	188.12
5	186.20
6	195.39
7	191.84
8	199.45
9	176.34
10	208.19
Maximum	208.19
Minimum	169.08

Specimen 1 to 10

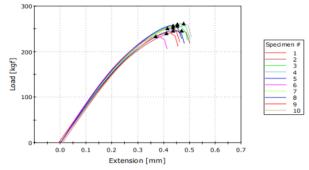


Gambar 7. Grafik hasil uji tarik variasi ketebalan 0.5 + 1.2 + 0.6 mm

Gambar 7 menjelaskan bahwa hasil uji tarik untuk spesimen dengan variasi ketebalan 0.5 + 1.2 + 0.6 mm didapatkan bahwa maximum load sebesar 208.19 kgf dan minimum load sebesar 169.08 kgf.

Tabel 3. Hasil uji tarik variasi ketebalan 0.8 + 0.6 + 1.0 mm

	Maximum Load		
	[lbf]	[kgf]	
1	707.74	321.02	
2	690.51	313.21	
3	664.71	301.50	
Maximum	707.74	321.02	
Minimum	664.71	301.50	


Gambar 8. Grafik hasil uji tarik spesimen ketebalan 0.8 + 0.6 + 1.0 mm

Gambar 8 menjelaskan bahwa dari hasil uji tarik yang dilakukan didapatkan bahwa untuk spesimen dengan variasi ketebalan 0.8 + 0.6 + 1.0 mm didapatkan besarnya maximum load sebesar 321.02 kgf dan minimum load sebesar 301.50 kgf.

Tabel 4. Hasil uji tarik variasi ketebalan 0.8 + 1.2 + 1.2 mm

	Maximum Load
	[kgf]
1	251.46
2	246.30
3	257.08
4	260.76
5	257.54
6	234.13
7	253.33
8	246.31
9	240.37
10	262.01
Maximum	262.01
Minimum	234.13

Specimen 1 to 10

Gambar 9. Grafik hasil uji tarik variasi ketebalan 0.8 + 1.2 + 1.2 mm

Gambar 9 dan tabel 4 menjelaskan bahwa dari hasil pengujian tarik yang dilakukan didapatkan bahwa maximum load sebesar 262.01 kgf dan minimum load sebesar 234.13 kgf.

Berdasarkan standar *mechanical properties* pada tabel 5. Dalam menentukan kualitas hasil uji tarik menggunakan ketebalan paling kecil dalam kombinasi sebagai acuan dalam penentuan standar. Dalam variasi ketebalan paling kecil dalam pengujian adalah 0.5 mm atau 0.020 inchi.

Tabel 5. Standard mechanical properties alumunium 2024 T42 [16]

Temper	Widths	Thickness	Tensile Strength minimum	Yield Strength at 0.2 percent Offset or at Extension Indicated		Elongation in 2 in. or 4 times D 1/, 2/, minimum
	Inches	Inches	ksi	Minimum ksi	Extension under load Inch/Inch	Percent
T42 8/	All	0.008 thru 0.009	55.0	34.0	0.0056	10
	All	0.010 thru 0.020	57.0	34.0	0.0056	12
	All	0.021 thru 0.062	57.0	34.0	0.0056	15
	All	0.063 thru 0.249	60.0	36.0	0.0056	15
	All	0.250 thru 0.499	60.0	36.0	0.0058	12
	All	0.500 thru 1.000 4/	61.0	38.0	0.0055	8
	All	1.001 thru 1.500 4/	60.0	38.0	0.0056	7
	All	1.501 thru 2.000 4/	60.0	38.0	0.0055	6
	All	2.001 thru 3.000 4/	58.0	38.0	0.0055	4

Didapatkan nilai tensile strenght minimum ketebalan 0.5 mm adalah sebesar 57.0 ksi atau 57000 psi selanjutnya disesuaikan dengan tabel ultimate strenght untuk mengetahui standar ultimate minimum kekuatan tarik.

Tabel 6. Ultimate strength alumunium 2024 T42 [14]

			Ultimat	te Streng	tha		Ultimat	te Streng	tha	UI	timate	Streng	th ^a	UI	timate	Strengt	th ^a
Non Thick of Th Sh	inner	and a	00 psi above per Weld	and a	MPa bove per Weld	to 55 psi lt	00 psi 5 999 of per Weld	385.9 N ^b	MPa to MPa per Weld	to 34 psi It	00 psi 1 999 of per Weld	239.9 N ^b	IPa to Mpa per Weld	19.50 1b£	low 00 psi per Weld	135 N ^b	low MPa per Weld
in	mm	min.	min. avg	min.	min. avg	min.	min. avg	min.	min. avg	min.	min. avg	min.	min. avg	min.	min. avg	min.	min. avg
0.010	0.25	60	75	265	335	50	65	225	290	_	_	_	_	_	_	_	_
0.012	0.30	75	95	335	425	65	85	290	380	30	40	135	175	20	25	90	110
0.016	0.40	110	140	490	625	100	125	445	555	70	90	310	400	50	65	225	290
0.018	0.45	125	160	555	710	115	145	510	645	85	110	380	490	65	85	290	380
0.020	0.50	140	175	625	780	135	170	600	755	100	125	445	555	80	100	355	445
0.022	0.55	160	200	710	890	155	195	690	865	120	150	535	665	95	120	425	535
0.025	0.65	185	235	825	1045	175	200	780	890	145	185	645	825	110	140	490	625
0.028	0.70	215	270	995	1200	205	260	910	1155	175	220	780	980	135	170	600	755
0.032	0.80	260	325	1155	1445	235	295	1045	1310	210	265	935	1180	165	210	735	935
0.036	0.90	305	385	1355	1710	275	345	1225	1535	255	320	1135	1425	195	245	865	1090
0.040	1.00	345	435	1535	1935	310	390	1380	1735	300	375	1335	1670	225	285	1000	1270
0.045	1.10	405	510	1800	2270	370	465	1645	2070	350	440	1555	1955	260	325	1155	1445
0.050	1.30	465	585	2070	2600	430	540	1910	2400	400	500	1780	2225	295	370	1310	1645
0.056	1.40	555	670	2470	2980	515	645	2290	2870	475	595	2110	2645	340	425	1510	1890
0.063	1.60	670	840	2980	3635	610	765	2715	3400	570	715	2535	3180	395	495	1755	2200

104 Heni Hendaryati, M. Irkham Mamungkas, Iis Siti Aisyah, Muhammad Hasbi Rusmana Pengaruh variasi ketebalan plat alumunium 2024 T42 terhadap kekuatan tarik dan macrography pada proses resistance spot welding

Dimana diperoleh nilai standart ultimate strenght minimum kekuatan uji tarik yaitu sebesar 140 lbf. Maka dapat dikatakan nilai kekuatan tarik dari tiga variasi ketebalan dengan parameter pengelasan yang sama sudah memenuhi standart minimum yang sudah ditentukan.

Tabel 7. Data hasil uji *macrography* variasi ketebalan 0.8 + 0.6 + 1.0mm

NO	Nugget	Penetration (%)				
	Diameter (mm)	Min	Max			
1	3.88	28.64	60.82			
2	3.92	28.60	62.53			
3	3.80	30.12	62.74			

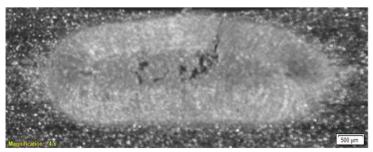
Pada tabel 7 dijelaskan bahwa dari hasil pengamatan macrography untuk spesimen dengan ketebalan 0.8 + 0.6 + 1.0 mm didapatkan bahwa spesimen dengan diameter nugget 3.80 mm memiliki penetration dengan persentase terbesar, yaitu sebesar 62.74%.

Gambar 10. Macrography weld nugget spesimen uji variasi ketebalan 0.8 + 0.6 + 1.0mm

Tabel 8. Data hasil uji macrography variasi ketebalan 0.5 + 1.2 + 0.6 mm

NO	Nugget Diameter	Penetration	n (%)
	(mm)	Min	Max
1	3.67	25.86	31.25
2	3.95	41.30	42.86
3	3.62	28.57	50

Pada tabel 8 dijelaskan bahwa dari hasil pengamatan macrography untuk spesimen dengan ketebalan 0.5 + 1.2 + 0.6 mm didapatkan bahwa spesimen dengan diameter nugget 3.62 mm memiliki penetration dengan persentase terbesar, yaitu sebesar 50 %.



Gambar 11. Macrography weld nugget spesimen uji variasi ketebalan 0.5 + 1.2 + 0.6 mm

Tabel 9. Data hasil uji macrography variasi ketebalan 08 + 1.2 + 1.2 mm

Nugget Diameter	Penetration (%)			
(mm)	Min	Max		
4.30	45.78	66.12		
4.96	48.65	62.90		
4.62	40.70	57.26		
	(mm) 4.30 4.96	(mm) Min 4.30 45.78 4.96 48.65		

Pada tabel 9 dijelaskan bahwa dari hasil pengamatan macrography untuk spesimen dengan ketebalan 08 + 1.2 + 1.2 mm didapatkan bahwa spesimen dengan diameter nugget 4.62 mm memiliki penetration dengan persentase terbesar, yaitu sebesar 57.26 %.

Gambar 12. Macrography weld nugget spesimen uji variasi ketebalan 08 + 1.2 + 1.2 mm

Pada gambar 10, 11, dan 12 didapatkan pengamatan macrography untuk weld nugget dengan variasi ketebalan 0.8 + 0.6 + 1.0 mm, 0.5 + 1.2 + 0.6 mm, dan ketebalan 0.8 + 1.2 + 1.2 mm dimanadari tabel minimum nugget size semua variasi menghasilkan batas nugget standart perusahaan seperti terlihat pada tabel 10.

Dalam menentukan kualitas resistance spot welding pada tiga variasi ketebalan, setelah mendapatkan hasil dari pengujian macrography untuk ukuran diameter nugget maka perlu disesuaikan untuk menentukan standart minimum nugget pada tabel 10 minimum nugget size sebagai acuan yang dijadikan dalam menentukan standart minimum nugget size adalah ketebalan terkecil dari variasi yang sudah dilakukan pengujian.

Tabel 10. Minimum nugget size [14]

Nominal 7 of Thinn		Nugget	Size (D ₈)
in	mm	in	mm
0.001	0.03	0.010	0.25
0.002	0.05	0.015	0.38
0.003	0.08	0.020	0.50
0.004	0.10	0.030	0.76
0.005	0.12	0.035	0.89
0.006	0.16	0.040	1.02
0.007	0.18	0.045	1.14
0.008	0.20	0.050	1.27
0.010	0.25	0.060	1.52
0.012	0.30	0.070	1.78
0.016	0.40	0.085	2.16
0.018	0.45	0.090	2.29
0.020	0.50	0.100	2.54
0.022	0.55	0.105	2.68
0.025	0.65	0.120	3.05
0.028	0.70	0.130	3.30
0.032	0.80	0.140	3.56

Seperti terlihat dari hasil pengujian yang dilakukan bahwa untuk ketebalan minimum sheet sebesar 0.5 mm adalah nugget dengan ukuran 2.54 mm, sedangkan seluruh pengujian menghasilkan diameter nugget yang kesemuanya melebihi 2.54 mm, sehingga bisa dikatakan bahwa semua spesimen telah memenuhi standar yang ditetapkan perusahaan.

4. SIMPULAN

Berdasarkan penelitian yang telah dilakukan maka diperoleh kesimpulan bahwa kualitas hasil pengelasan *Resistance Spot Welding* dengan varisai ketebalan dan parameter sebagai variabel tetap tidak dapat ditentukan dengan hanya meninjau dari hasil uji tarik. Diperlukan pengujian lain sebagai penunjang untuk menentukan kualitas dari hasil proses *Resistance Spot Welding*. Sehingga pada penelitian ini menambahkan pengujian *macrography* guna mengetahui diameter *nugget*, nilai penetrasi, dan daerah *Heat Affected Zone (HAZ)*. Dengan menggunakan tiga variasi ketebalan dan parameter sebagai variabel tetap didapatkan hasil maksimum nilai uji tarik dan dan diameter nugget pada setiap variasi ketebalan telah melewati batas standart nilai yang telah ditentukan dengan hasil tersebut menunjukan bahwa dengan parameter sebagai variabel tetap sesuai dengan setiap variasi ketebalan. Ukuran diameter nugget keseluruhan melebihi batas yang diberikan perusahaan, yaitu sebesar 2.54 mm.

REFERENSI

- [1] H. Wiryosumarto and T. Okumura, teknologi-pengelasan-logam. Jakarta, 2000.
- [2] H. Arora, R. Singh, and G. S. Brar, "Thermal and structural modelling of arc welding processes: A literature review," *Meas. Control (United Kingdom)*, vol. 52, no. 7–8, 2019, doi: 10.1177/0020294019857747.
- [3] N. Haghshenas and H. Moshayedi, "Monitoring of Resistance Spot Welding Process," Exp. Tech., vol. 44, no. 1, pp. 99–112, Feb. 2020, doi: 10.1007/s40799-019-00341-z.
- [4] S. M. Hassoni, O. S. Barrak, M. I. Ismail, and S. K. Hussein, "Effect of Welding Parameters of Resistance Spot Welding on Mechanical Properties and Corrosion Resistance of 316L," *Mater. Res.*, vol. 25, 2022, doi: 10.1590/1980-5373-MR-2021-0117.
- [5] S. H. Mousavi Anijdan, M. Sabzi, M. Ghobeiti-Hasab, and A. Roshan-Ghiyas, "Optimization of spot welding process parameters in dissimilar joint of dual phase steel DP600 and AISI 304 stainless steel to achieve the highest level of shear-tensile strength," *Mater. Sci. Eng. A*, vol. 726, pp. 120–125, May 2018, doi: 10.1016/J.MSEA.2018.04.072.
- [6] A. Ghatei-Kalashami, S. Zhang, M. Shojaee, A. R. H. Midawi, F. Goodwin, and N. Y. Zhou, "Failure behavior of resistance spot welded advanced high strength steel: The role of surface condition and initial microstructure," *J. Mater. Process. Technol.*, vol. 299, 2022, doi: 10.1016/j.jmatprotec.2021.117370.
- [7] L. Chen et al., "Investigation on shearing strength of resistance spot-welded joints of dissimilar steel plates with varying welding current and time," J. Mater. Res. Technol., vol. 16, 2022, doi: 10.1016/j.jmrt.2021.12.079.
- [8] B. Zhou, T. Pychynski, M. Reischl, E. Kharlamov, and R. Mikut, "Machine learning with domain knowledge for predictive quality monitoring in resistance spot welding," *J. Intell. Manuf.*, vol. 33, no. 4, 2022, doi: 10.1007/s10845-021-01892-y.
- [9] O. Martin, V. Ahedo, J. I. Santos, and J. M. Galan, "Comparative Study of Classification Algorithms for Quality Assessment of Resistance Spot Welding Joints from Pre- and Post-Welding Inputs," *IEEE Access*, vol. 10, 2022, doi: 10.1109/ACCESS.2022.3142515.
- [10] D. Sebagai, S. Satu, U. Memperoleh, G. Sarjana, and T. Mesin, "Pengaruh rasio tebal plat dan tegangan listrik sekunder pengelasan terhadap mode patah sambungan las titik (," 2011.
- [11] R. W. Messler, PRINCIPLES OF WELDING Processes, Physics, Chemistry, and metallurgy.

- WILEY-VCH Verlag GmbH & Co. KGaA, 2004.
- [12] H. Zhang, X. Qiu, F. Xing, J. Bai, and J. Chen, "Failure analysis of dissimilar thickness resistance spot welded joints in dual-phase steels during tensile shear test," Mater. Des., vol. 55, pp. 366-372, 2014, doi: 10.1016/j.matdes.2013.09.040.
- [13] B. Y. Fuad, I. S. Aisyah, and D. Kurniawati, "Pengaruh Kombinasi Ketebalan Plat Aluminium 2024 T42 Terhadap Sifat Mekanis pada Proses Resistance Spot Welding Part Door Assy Helikopter NBELL 412EP," pp. 151-162, 2020.
- [14] AWS American Welding Society, AWS D17.2 Specification for Resistance Welding for Aerospace Applications, no. 02016826. 2013.
- [15] R. D. Wijaya, I. S. Aisyah, and A. Salim, "PENGARUH KOMBINASI KETEBALAN PLAT MATERIAL AISI 321 TERHADAP SIFAT MEKANIS PADA," pp. 177–188, 2020.
- [16] R. N. Lumley, Fundamentals of aluminium metallurgy: Production, processing and applications. 2010.

The effect of variations in thickness of 2024 T42 aluminum plate on tensile strength and macrography in the process of resistance spot welding

ORIGINALITY REPORT			
4%	4%	0%	0%
SIMILARITY INDEX	INTERNET SOURCES	PUBLICATIONS	STUDENT PAPERS
PRIMARY SOURCES			
1 pdfcoffe Internet Sour			2%
2 adoc.pu			2%

Exclude quotes Off
Exclude bibliography On

Exclude matches

< 2%